Lunds Tekniska Hogskola EDANO95
Institutionen for datavetenskap HT 2018

Losning: Tillampad Maskininlarning
Solution: Applied Machine Learning
Tentamen 2019-01-08, 08.00-13.00

1 Boosting (JM): 5p

10p

2 k-Means (JM)

)

a

3 K-nearest neighbour (JM): 5p
1. b)
2. ¢)
3. ¢)

4 Neural networks (PN): 12+9+49 = 30p

4.1 Convolutional Neural Networks

A suggestion for a solution to the programming task:

#!/usr/bin/env python

coding:

from
from
from
from

(train _images, train labels),
cifar10.load data()

train
train

test images =
test images

keras
keras
keras
keras.

utf—8

utils

images
images

import
import models
.datasets import cifarl0

layers

import to categorical

(test images, test labels)

train images.reshape ((50000, 32, 32, 3))
train _images.astype(’'float32’) / 255

test images.reshape((10000, 32, 32, 3))
test images.astype(’float32’) / 255

train _labels = to categorical(train_labels)
test labels = to categorical(test labels)

model = models. Sequential ()
model.add (layers.Conv2D (64, (3, 3), activation='relu’,

input shape=(32, 32, 3), use bias=False))
model.add (layers.MaxPooling2D (2, 2))
model.add (layers.Conv2D (128, (3, 3), activation=’'relu’, use bias=False))
model.add (layers. Flatten ())
model.add (layers.Dense (128, activation='relu’, use bias=False))
model.add(layers.Dense (10, activation=’softmax’, use bias=False))

model .

model

model .

model .
model .

(
(
.add (
(
(

model

model .
model .

summary ()

add (layers.

add (layers
add(layers
layers
add(layers
add (layers

. MaxPooling2D (2,

models. Sequential ()

Conv2D (64, (3, 3),
activation="relu’, input shape=(32, 32, 3)))

2))

.Conv2D (128, (3, 3), activation='relu’))
.MaxPooling2D (2, 2))
.Conv2D (245, (3, 3), activation="relu’))
.MaxPooling2D (2, 2))

model . (
model . (
.add(layers
(
(

model

model .
model .

model

model

model .

test

add(layers
add(layers

add(layers
add (layers

.summary ()

.Dropout (0.5))

.Flatten ())

.Dense (1024, activation='relu’))
.Dropout (0.5))

.Dense (10, activation=’'softmax’))

.compile (optimizer="rmsprop’,

loss=’categorical crossentropy’
metrics =[’accuracy ’|)

fit (train

_loss, test

print (test acc)

acc = model.evaluate (test

images, train_ labels, epochs=2, batch

5 Markov Decision Processes (VK):
41414151513 = 25p

1. Please refer to the lecture slides

2. Please refer to the lecture slides

s) = Ex {Ri11 + 70 (St41)| S = s}

b) gx(s,a) = Ex {Riy1 + ¥ (Sty1, At41)|S = 5, Ay = a}

vr(s
0.9 (

q*(s,STAY) = (—

vr(s) = Z (R“—i—’yz p)

)
1

q¢*(s,RUN) =7
v*(s) = max{¢*(s, RUN), ¢*(s, STAY)}

acA s'eS

—04-740.6-(=140.9 (0.5-2+0.5-3)) =0.2+0.6- (—
+1.5)) =2.8+0.6-1.25 = 3.55

vi(s) = ggi((R +79) Phva(s)

s'eS
1+0.9(0.5-2+0.5-3)) =1.25

images ,

size=64)

_labels)

6 Reinforcement Learning / Q-Learning (ET):

10+5+4+3+4+3 = 25p

In general, all answers need to be motivated.

1.

A: The function implements Policy Iteration as explained and exem-
plified in the lecture. a runs over states, b over the possible actions, ¢
is the discount factor 7, d contains the transition matrix (d(%,j) con-
tains the resulting state when taking action j in state i), and e the
reward matrix (e(%,j) is the reward r for taking action j in state).
The results of the function are then the (optimal) policy 7 in res (i.e.
res(i) is which action to take in state i), the values or utilities v(7) for
all states in res2 and the number of “episodes” (iterations) needed for
the algorithm to converge (based on a stop criterion expressed in the
change of values from one episode to the next) in converged at.

A: The problem is that the function requires transition matrix and
reward matrix explicitly as input, which are not given in the original
material. One could simply use the go-function for all possible state-
action pairs to retrieve both the transition and reward-matrices. This
is, however, only possible as the state-action space is very limited.

A: Yes, one could use Q-learning (or, better e-greedy Q-learning), as it
relies only on the output of the “go”’-function and the problem specifi-
cation (states and actions).

A: The main idea is to consider the fact that we know more about
a state-action pair after having explored it than we knew before. A
portion (regulated by the learning rate) of this knowledge gain is used
as an update to the value of a state-action pair by spying one more
step ahead from the state-action pair that is worked on. By more or
less randomly exploring (walking through) the more or less complete
state-action space, we update all of these values gradually for a number
of such walks (episodes).

A: Q-learning always chooses the best (reward maximising) action a’
for the computation of the new value (or follows a certain strategy like
e-greedy to add some randomness), while SARSA follows an arbitrarily
chosen but fixed policy through an entire sequence.

	Boosting (JM): 5p
	k-Means (JM): 10p
	K-nearest neighbour (JM): 5p
	Neural networks (PN): 12+9+9 = 30p
	Convolutional Neural Networks

	Markov Decision Processes (VK): 4+4+4+5+5+3 = 25p
	Reinforcement Learning / Q-Learning (ET): 10+5+3+4+3 = 25p

