
Lunds Tekniska Högskola EDAN95
Institutionen för datavetenskap HT 2018

Tillämpad Maskininlärning
Applied Machine Learning

Tentamen 2019–01–08, 08.00–13.00, MA:08

You can give your answers in English or Swedish.
You are welcome to use a combination of figures and text in your answers.

100 points, 50% needed for pass.

1 Boosting (JM): 5p

Name the steps of a boosting algorithm (e.g., AdaBoost) and shortly (in one
sentence) explain their function.

2 k-Means (JM): 10p

Given the following data set: {(1.0, 1.0), (1.5, 2.0), (3.0, 4.0), (5.0, 7.0), (3.5, 5.0),
(4.5, 5.0), (3.5, 4.5)} cluster it into two clusters using k-means algorithm. You
may begin with the clusters initialized to the two points in the data set that
are farthest apart (but feel free to use some other seed that you deem useful).
Explain what you do.

3 K-nearest neighbour (JM): 5p

Multiple choice: Please answer each of the following five sub-questions by
writing down the letter(s) corresponding to the correct answer(s). Note
that a wrong answer results in negative points, hence, it can give a negative
result for the sub-question and thus cancel out positive points from other sub-
questions, but the overall result for the question cannot become negative.

1. K-nearest neighbour is called a “lazy” classification algorithm because:

(a) the amount of computations it performs is minimal;

(b) in learning phase the teaching instances are just stored and all
the computation takes place during classification;

(c) it considers only the nearest instances and does not pay attention
to all learnt instances.

1

2. In KNN classification the majority vote is taken to determine the class
membership. In KNN regression the value of the target function is
determined by:

(a) majority vote of values for k nearest neighbours;

(b) median of all values for the instances classified the same way as
the query;

(c) mean of the k nearest neighbour values, weighed by the distance
to the query.

3. K-nearest neighbour uses:

(a) necessarily a euclidean distance defined over the space of all fea-
tures;

(b) necessarily a euclidean distance defined over the subspace of all
numerical features, leaving out the non-numerical ones;

(c) an arbitrary distance function defined over the space of all fea-
tures.

(d) an arbitrary distance function defined over the subspace of all
numerical features, leaving out the non-numerical ones.

4. K-nearest neighbour is

(a) sensitive

(b) not sensitive

to the number of each class elements, so that more numerous classes
get preference.

5. K-nearest neighbour is

(a) sensitive

(b) not sensitive

to redundant features.

Further questions on following pages

2

4 Neural networks (PN): 12+9+9 = 30p

4.1 Convolutional Neural Networks

In this exercise, you will build an elementary convolutional feed-forward
network to classify a set of images. You will use the Keras API.

Principles. In this section, you will explain some key concepts of convo-
lutional neural networks.

1. Describe briefly what a 2D convolution is.

2. Compute manually the convolution of the image in Table 1 with the
kernel in Table 2. You will tell how to deal with the image borders.

0 0 0 0 0 0 0
0 1 2 3 4 5 6
6 5 4 3 2 1 0
0 1 2 3 4 5 6
6 5 4 3 2 1 0
0 1 1 1 1 1 0
0 0 0 0 0 0 0

Table 1: Image

1 1 1
1 1 1
1 1 1

Table 2: Kernel

3. Describe what a max-pooling operation is.

4. Apply this operation to the image resulting from the convolution. You
will use a 2 × 2 mask.

Programming. In your program, you will use the CIFAR10 dataset avail-
able from Keras. Each image has a 32 × 32 dimension and represents an
object among 10 categories numbered from 0 to 9: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck. The images have three
color channels: red, green, and blue. The input shape is then (32, 32, 3),
where the last dimension is to take into account the colors.

The code to load and preprocess the images is given below:

3

from keras.datasets import cifar10

(x_train, y_train), (x_test, y_test) = cifar10.load_data()

train_images = train_images.reshape((50000, 32, 32, 3))
train_images = train_images.astype(’float32’) / 255

test_images = test_images.reshape((10000, 32, 32, 3))
test_images = test_images.astype(’float32’) / 255

train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

You will design a rudimentary architecture to train a model to categorize
the images. You will use the Keras classes and functions with the appropriate
arguments. If you are not sure about the argument order, just write them
in any order and comment what you are doing in your program. You will
ignore the Python imports.

1. Build a sequential feedforward network consisting of:

• A convolutional layer with a kernel of 3 × 3. The depth of the
output feature map – the number of kernels you will train – will
be of 64;

• A max pooling layer with a mask of 2 × 2;

• A convolutional layer with a kernel of 3 × 3 with a depth of 128;

• Two dense layers.

You will use the Sequential(), Conv2D(), MaxPooling2D(), and Dense()
classes. The first dense layer will have 128 nodes and you will deter-
mine the number of output nodes of the last one. You will give the
activation function in each layer;

2. You need to adapt the multidimensional output of a convolutional layer
to a dense layer. Tell the name of this adaptation layer and insert it
in your network;

3. Compile your network. You will select an optimizer as well as a loss;

4. Fit your model;

5. Evaluate it using the appropriate evaluation function.

4

4.2 Analyzing a Neural Network

You will now analyze the parameters of your model. Calling the model.summary()
function results in this table:

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 30, 30, 64) 1728

max_pooling2d_1 (MaxPooling2 (None, 15, 15, 64) 0

conv2d_2 (Conv2D) (None, 13, 13, 128) 73728

flatten_1 (Flatten) (None, 21632) 0

dense_1 (Dense) (None, 128) 2768896

dense_2 (Dense) (None, 10) 1280
===
Total params: 2,845,632
Trainable params: 2,845,632
Non-trainable params: 0

Non-trainable params: 0

Explain the number of parameters: 1728, 73728, 2768896, and 1280.
To simplify this analysis, your teacher has removed the optional bias

(intercept) from the Conv2D() and Dense() layers. This can be done with
the use_bias=False option. Should you try to reimplement this program,
you will find slightly different numbers with the default use_bias=True.

4.3 Precision and Recall

Table 3 shows the confusion matrix resulting from a classification experiment.
In this exercise, you will clarify how to read such a matrix and compute the
precision and recall for the three classes. Just write the fractions, for instance
1/3 and not 0.33.

1. Describe how to interpret the matrix in Table 3;

2. What would be a perfect matrix? Give the corresponding values for
Table 3;

3. For a given class, the recall is defined as the true positives divided by
the sum of the true positives and false negatives. For Class 1, how

5

True\Predicted Class 1 Class 2 Class 3 Precision Recall
Class 1 60 30 10
Class 2 5 30 5
Class 3 20 10 50

Table 3: A confusion matrix

many true positives are there (correctly classified as Class 1)? And
false negatives (wrongly classified as not being in Class 1)?

4. For the three classes, compute the recalls. (Write them in the form of
fractions);

5. For a given class, the precision is defined as the true positives divided
by the true and false positives. For Class 1, how many true positives
are there? And how many false positives (wrongly classified as being
in Class 1)?

6. For the three classes, compute the precision.

7. Define what the F1 score is. (Just define it do not compute it).

Further questions on following pages

6

5 Markov Decision Processes (VK):
4+4+4+5+5+3 = 25p

1. Please provide the definition of the Markov Decision Process as pre-
sented in the lecture!

2. What is the definition of the

a) Policy?
b) State Value function?
c) Action value function?

3. Please write down the recursive Bellman Expectation Equation for the

a) State value function!
b) Action value function!

4. Consider the graph given below, assume that the given state values
are optimal. Please calculate for state s the state value vπ(s) for
π(s,RUN) = 0.4, π(s, STAY) = 0.6, γ = 0.9!

5. Assume that the provided state values are optimal. What is the opti-
mal state value for s, v∗(s)? Please provide your complete explanation
by computing q∗ and π∗!

6. In the graph, one of the rewards is inconsistent with the state value
v∗(s). Which one is it, and what should be its value?

7

6 Reinforcement Learning / Q-Learning (ET):
10+5+3+4+3 = 25p

You have a toy problem with a little cartoon agent trying to learn to “walk”
(as shown in the lecture) with which you want to explore some reinforcement
learning approaches. It lives in a world with 16 discrete states, in which one
of four actions can be applied, always entailing a state change. A friend has
provided you with a “go”-function for the agent, that given an action applies
this action to its current state and gives you back the new state and a reward.
Apparently, some states are really bad, and only very few state-action pairs
would actually make the agent move forward in its cartoon world. You also
got an implementation of some sort of probably suitable learning algorithm,
but as your friend said when giving it to you, it is in “research-code” shape
and not really documented. When you open the source file, you realise that
your friend was not exaggerating—no comments is one thing, but not using
any kind of telling variable names really makes this a bit of a mess. So, you
try to figure out what your friend provided you with and also, what your
general options are to solve your problem.

1. Analyse and explain the function learning given as (Python) code snip-
pet below by relating the function and variable names calls to their
counterparts of a method used within reinforcement learning shown
and discussed in the lecture(s) and give the name of this method!

2. Given the problem (learn to walk) and the mentioned “go”-function, you
figure that you will not be able to solve the problem by simply using
the function learning. Why? What can you do to use the function
learning without modifying it to solve your learning problem?

3. Is there an algorithm that can work directly with what has been given
to you (i.e. the agent’s “go”-function)? Which one?

4. Explain the main idea behind Temporal Difference learning.

5. One specific form of Temporal Difference learning is Q-learning, an-
other is SARSA-learning. Explain the difference between these two
(formulas given below)!

Q− learning : Q(s, a)← Q(s, a) + α
[
r + γmaxa′Q(s′, a′)−Q(s, a)

]
SARSA : Q(s, a)← Q(s, a) + α

[
r + γQ(s′, a′)−Q(s, a)

]
The Python code snippet (function learning) to analyse and explain in ques-
tion part 6.1 follows on the next page. Also given is a help function argmax,
that you do not need to explain.

8

the implementation of some function ’learning’ that should
make the agent learn
based on some vector ’d’ (of size 16)
and some matrix ’e’ (of size 16x4)
def learning(d,e):

c = 0.95
res = [None for a in d]
res2 = [0 for a in d]
converged_at = -1

for epi in range(1000):

for a in range(len(res)):
res[a] =

argmax(lambda b:
e[a][b] + c*res2[d[a][b]],
range(len(d[a])))

sum_sq = 0.0
for a in range(len(res2)):

b = res[a]
tmp = e[a][b] + c*res2[d[a][b]]
sum_sq += (res2[a]-tmp)**2
res2[a] = tmp

if(math.sqrt(sum_sq) <= 1e-5):
converged_at = epi
break

return res,res2,converged_at

argmax is a help function to calculate the argmax
over a list of arguments given by a function
def argmax(f, args):

mi = None
m = -1e10
for i in args:

v = f(i)
if v > m:

m = v
mi = i

return mi

9

	Boosting (JM): 5p
	k-Means (JM): 10p
	K-nearest neighbour (JM): 5p
	Neural networks (PN): 12+9+9 = 30p
	Convolutional Neural Networks
	Analyzing a Neural Network
	Precision and Recall

	Markov Decision Processes (VK): 4+4+4+5+5+3 = 25p
	Reinforcement Learning / Q-Learning (ET): 10+5+3+4+3 = 25p

