Lunds Tekniska Hogskola EDANO95
Institutionen for datavetenskap

Tillampad Maskininldrning
Applied Machine Learning
Example

You can give your answers in English or Swedish.
You are welcome to use a combination of figures and text in your answers.
100 points, 50% needed for pass.

1 Ensemble Learning Algorithms (JM):
141414141 = 5p

Multiple choice: Please answer each of the following five sub-questions by
writing down the letter(s) corresponding to the correct answer(s). Note
that a wrong answer results in negative points, hence, it can give a negative
result for the sub-question and thus cancel out positive points from other sub-
questions, but the overall result for the question cannot become negative.

1.1 Bootstrapping

is a technique of manipulating training data consisting of:

a) given a series of training set instances, training classifiers on them and
averaging their output;

b) given a series of training set instances, training classifiers on them taking
into account misclassified instances;

¢) sampling instances with replacement.

1.2 Boosting
is a technique of manipulating training data consisting of:

a) given a series of training set instances, training classifiers on them and
averaging their output;

b) given a series of training set instances, training classifiers on them taking
into account misclassified instances;

¢) sampling instances with replacement.



1.3 Bagging
is a technique of manipulating training data consisting of:

a) given a series of training set instances, training classifiers on them and
averaging their output;

b) given a series of training set instances, training classifiers on them taking
into account misclassified instances;

c¢) sampling instances with replacement.

1.4 Ensemble learning

uses:
a) only decision trees as its building blocks;
b) only recurrent neural networks as its building blocks;

c¢) arbitrary classifiers as its building blocks.

1.5 AdaBoost

is a boosting algorithm that got its name:
a) from Ada Lovelace, a computing science pioneer from 19th century;
b) from the word “Adaptive”;

c¢) from the first names of its creators, Adam, Daniel and Ari.



2 Decision Trees (JM): 6+14 = 20p

Given the Quinlan set of instances (see Table ?7), build two decision trees
properly classifying all the instances. Your trees should obey the following
constraints:

a) The first tree should be of depth no more than three (the root node
counting as 0). Feel free to guess it, as there are no constraints put on
the method of finding it.

b) The second tree should minimize Gini impurity index in every node (a.k.a.

CART algorithm).

The Gini impurity index may be defined as follows: it is a measure
of how often a randomly chosen element from the set would be incorrectly
labeled if it was randomly labeled according to the distribution of labels
in the subset. The Gini impurity index can be computed by summing the
probability p; of an item with label 7 being chosen times the probability
Dk 2Pk = 1 —p of a mistake in categorizing that item. It reaches its
minimum (zero) when all cases in the node fall into a single target category.
Thus Gini impurity index G for a set of items with M classes may be found
as follows. Suppose i € {1,2,..., M}, and let p; be the fraction of items
labeled with class ¢ in the set.
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3 Neural networks (PN): 10+10+5 = 25p

3.1 Loss

In this section, you will compute the loss of a multiclass classification. Given
an image of a flower, the goal of your classifier is to determine its type among
dandelion, rose, daisy, tulip, or sunflower. We suppose that your classifier is
a neural network that uses a softmax activation in the last layer.

1. Let us suppose that Table 77 shows the output of your classifier for
five images. Compute the sum of the numbers in each rOW?E].

~

y Y
image # || dandelion rose daisy tulip sunflower Truth
1 0.7 0.1 0.05 0.05 0.1 || dandelion
2 0.05 0.3 0.1 0.5 0.05 rose
3 0.1 0.6 0.1 0.1 0.1 rose
4 0.2 0.1 0.1 0.5 0.1 tulip
) 0.03 0.03 0.02 0.02 0.9 || sunflower

Table 1: The results of a classification shown in the ¥ vector with a softmax
activation. The true type of the image is shown in the y column

2. What do the numbers in the rows mean?

3. Given the values in ¥, for each image, what would be the result of the
classification? Give the name of the predicted flower for each row.

4. What would be the accuracy of your classifier?

5. The loss usually associated with the softmax activation is the categor-
ical cross-entropy. It is defined as

H(P,M) = |X|ZP 2)In M (),
zeX

where P is the truth, and M is the prediction of the model. Using the
values in Table 77, rewrite the formula. You will represent the truth
as one-hot vectors, the prediction by appropriate values, and replace
the multiplication by the dot product. You will use logarithms that
you will not try to compute.

6. Give the final value of the loss. You will use logarithms that you will
not try to compute.

!The figures are imaginary.



3.2 Building a Neural Network

In this exercise, you will build a feed-forward network with the Keras API
to classify the data in Table 77.

Object Attributes Class
Outlook Temperature Humidity Windy
1 Sunny Hot High False 0
2 Sunny Hot High True 0
3 Overcast Hot High False 1
4 Rain Mild High False 1
5 Rain Cool Normal False 1
6 Rain Cool Normal True 0
7 Overcast  Cool Normal True 1
8 Sunny Mild High False 0
9 Sunny Cool Normal False 1
10 Rain Mild Normal False 1
11 Sunny Mild Normal True 1
12 Overcast  Mild High True 1
13 Overcast Hot Normal False 1
14 Rain Mild High True 0

Table 2: The Quinlan dataset

The dataset will be stored in a dictionary:

dataset = [{’0Outlook’: ’Sunny’, ’Temperature’: ’Hot’, ’Humidity’:

’Windy’: False, ’Class’: 0},

{’0utlook’: ’Sunny’, ’Temperature’: ’Hot’, ’Humidity’:

’Windy’: True, ’Class’: 0},
]

To preprocess the dataset, you will rely on this code that transforms the
categorical data in an X matrix and y vector:

X_cat = []

y =[]

# Extracts the X_cat table and y vector

for x in dataset:
X_cat += [{key: x[key] for key in x if key != ’Class’}]
y += [x[’Class’]]

# Converts the X_cat list in a numerical matrix
vect = DictVectorizer(sparse=False)
vect.fit(dataset)

*High’,

*High’,



X = vect.transform(X_cat)
print (X)
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Write the program to train a model. You will ignore the imports:

1. Build a sequential feedforward network consisting of three dense layers.
You will use the Sequential() and Dense() classes. The first layer
will have 50 nodes, the second one 25, and you will determine the
number of nodes of the last one. You will give the activation function
in each layer;

2. Compile your network. You will select an optimizer as well as a loss;
3. Fit your model;
4. Evaluate it.

The complete program should consist of about seven lines of Python.

3.3 Analyzing a Neural Network

You will now analyze the parameters of your model. Calling the model . summary ()
function results in this table:

Layer (type) Output Shape Param #
dense_1 (Dense) (None, 50) 500
dense_2 (Demse)  (Nome, 25) 1250
dense_3 (Demse)  (Nome, 1) 25




Total params: 1,775
Trainable params: 1,775
Non-trainable params: O

Explain the number of parameters: 500, 1250, and 25.

To simplify this analysis, your teacher has removed the optional bias (in-
tercept) from the Dense () layers. This can be done with the use_bias=False
option. Should you try to reimplement this program, you will find slightly
different numbers with the default option: use_bias=True.

4 Bayesian Learning / Classifiers (VK):
54545 = 15p

A Bayesian Learner based on the Maximum Likelihood (ML) hypothesis
is in many cases a good approximation for solving a classification problem
given there is enough data, however, there might be cases in which it is
“not enough”. In such cases, a Maximum A Posteriori (MAP)-learner can
be better. On the other hand, there are situations where your data might
render the MAP-learner working exactly like the ML-learner.

1. Explain the difference between the two classifiers / learners!
2. Explain why the MAP-learner is considered better in the general case!
3. Give an example for a case where the difference does not really matter!

Hint: ML- and MAP-hypotheses hjsr, and hjs4p are defined as follows, with
D being the observed data points (samples):

hyrr = argmaxy P(D]h)

harap = argmazy, P(h|D)
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Markov Decision Processes (VK): 5+5+4+5+5 =
20p

. Please provide the definition of the Markov Decision Process as pre-

sented in the lecture!
What is the definition of the

a) Policy?
b) State Value function?

c¢) Action value function?
Please write down the recursive Bellman Expectation Equation for the

a) State Value function!

b) Action value function!

Consider the graph given below, assume that the given state values are
optimal. Please calculate for state s the state value v (s) for 7(s,a) =
0.5, ~v=0.8.

Assume that the provided state values are optimal. What is the opti-
mal state value for s, v*(s)? Please provide your complete explanation
by computing ¢* and 7*

R=8

R
.8_> s<— 2.4

N

P=0.25




6 Reinforcement Learning / Q-Learning (ET):
3+4+3+5 = 15p

You have a toy problem with a little cartoon agent trying to learn to “walk”
(as shown in the lecture). It lives in a world with 16 discrete states, in
which one of four actions can be applied, always entailing a state change.
Someone has provided you with a “go’-function for the agent, that given
an action applies this action to its current state and gives you back the new
state and a reward. Apparently, some states are really bad, and only very few
state-action pairs would actually make the agent move forward in its cartoon
world. However, you do not have access to the full reward- and transition-
functions (well, you could compute them by applying the go-function for
all states, since everything is discrete and finite, but you feel up for a little
challenge). Hence, you decide to use Q-Learning to find the Q-function, i.e.
the Q-Values of the state-action pairs, Q(s,a). You set out to compute your
Q-Values based on a greedy policy. Somehow, that does not really work
out—the little agent seems to learn nicely not to fall over, so it avoids bad
states, however, it seems stuck in useless behaviours, like lifting and setting
down one leg all the time, or moving one leg back and forth without ever
getting anywhere. Just when you start getting really frustrated, someone
mentions something like e-greedy to you—obviously, there is a way to get
out of this stupid behaviour!

1. What is a greedy policy in this context?

2. Explain what the helpful person meant! What is € in this context, and
how does it help?

3. Why can it be a good idea to adapt € during the learning process?
How can you adapt it?

4. Explain the entire update formula for (s, a) as given below:

Q(s,a) + Q(s,a) + « [T +ymazyQ(s',a’) — Q(s,a)]



