
ExtendJ

The Extensible Java Compiler

Jesper Öqvist

I work with Robots (Cognibotics AB) and Teaching (Lund University)

About Me

What I Like About Compilers

● Parsing

○ Context-Free Grammars

○ LR parsing

● Static Analysis

○ Name analysis

○ Type Checking

○ Type Inference

● Code Generation

○ Bytecode/Machine code generation

● Optimizations

○ Common subexpression elimination

○ Inlining

○ Register allocation

Compiler Engineers

● New general purpose languages (e.g. Julia, Swift, Rust)

● New Domain-Specific Languages (DSL)

● New compilers for old languages (COBOL, old DSLs, etc.)

● Maintenance of existing compilers

● Development of existing languages

● New compiler optimizations

● Smart programming tools

Programming Language Trends

ExtendJ - Extensible Java Compiler

A declaratively specified Java compiler.

Can be extended with JastAdd attributes (Java language extensions).

Demonstration of a large-scale compiler written with JastAdd.

extendj.org

ExtendJ - Extensible Java Compiler

Java 4-6 Torbjörn Ekman
Java 7 Jesper Öqvist (Master’s Thesis)

Java 8 Erik Hogeman (Master’s Thesis)

Maintainer: Jesper Öqvist

License: Modified BSD

extendj.org

Compiling Java vs SimpliC

extendj.org

SimpliC ExtendJ

Parser (LOC) 312 1 736

Classes 48 263

Attributes (LOC) 6 000 23 000

ExtendJ Goals

ExtendJ should be easy to extend with

Static Analyses

Language Features

Metrics, Refactoring, Test Selection,

etc.

Used for

Research,

PL experiments based on Java,

Compiler course projects.

extendj.org

Added 6,7,8 General Improvements Side Effect Removal

Bug Fixes (300+)

Regression Tests (1000+)

My Work on ExtendJ

Regression Test CommitsExtendJ Commits

Student Project: Bug Pattern Checker

Ella Eriksson & Zimon Kuhs

String vegetable;

if (vegetable == “pizza”) …

Student Project: Bug Pattern Checker

Ella Eriksson & Zimon Kuhs

String vegetable;

if (vegetable == “pizza”) …

=> Suggestion: replace == with .equals()

Student Project: Spread Operator

Filip Stenström & Wawrzyn Chonewicz

 Person[] P;

 ...

 String[] N = P*.getName();

Multiplicities Extension

I developed a Java language extension implementing

Multiplicities by Friedrich Steimann:

@any Person people;

people += alice; // += → .add()

people += bob;

people.work(); // Call .work() on alice and bob.

Friedrich Steimann, Jesper Öqvist, Görel Hedin:
Multiplicities: First implementation and case study (JOT, 2014)

Multiplicities

In collaboration with professor Friedrich Steimann (Fernuniversität Hagen),

I wrote a language extension to support programming with Multiplicities:

Collection<Person> pl =
new ArrayList<Person>();

pl.add(bob);
pl.add(alice);
for (Person p: pl) {

p.print();
}

16

@any Person pl;
pl += bob;
pl += alice;
pl.print();

 Multiplicities: First implementation and case study (JOT, 2014)

Demo

<Demo> Multiplicities

extendj.orgFriedrich Steimann, Jesper Öqvist, Görel Hedin:
Multiplicities: First implementation and case study (JOT, 2014)

Incremental Regression Testing

Our idea: run only the tests that are affected by the current change.

Regression tests need to be run after each change to the code to guard against defects.

Regression testing can be time consuming.

18Extraction-Based Regression Test Selection (PPPJ, ACM, 2016)

Building Extensions

ExtendJ Modules

java4
backend

java4
frontend

java5
backend

java5
frontend

java8
backend

java8
frontend

Extension Module

Your
Extension

Module dependency

... ...

Compiler Passes

Typically, compilation is divided into passes.

One Pass: all translation done while parsing. Few languages are single-pass.

(C is one-pass. Declaration order matters!)

Single Pass

Storage limitations on the B compiler demanded a one-pass technique in which output was
generated as soon as possible, and the syntactic redesign that made this possible was carried
forward into C.

- Dennis M. Ritchie, The Development of the C Language

DEC PDP-7

© User:Toresbe / Wikimedia Commons /
CC-BY-SA-1.0

The B compiler ran on a PDP-7 which

had about 18KB of memory.

https://en.wikipedia.org/wiki/User:Toresbe
http://commons.wikimedia.org/
http://creativecommons.org/licenses/by-sa/1.0/

Compilation Passes Attribute Equations

Pass-Oriented Attribute-Oriented

P1 P2 P3

Data

type = x.decl.type

decl = ...

vs.

Compilation Passes Attribute Equations

P1 P2 P3

Data

type = x.decl.type

decl = ...

errors = ... Errors!

bytecode = ... Java
Classfiles

Pass-Oriented Attribute-Orientedvs.

Attributes for Compilation

● Compilation is divided into small computations (attributes).

● Attributes are declarative

Say what should be computed, not how to do it.

● Attributes have no side-effects. Order independent!

● Attribute evaluator schedules attributes:

○ Memoization.

○ Demand evaluation.

○ Parallel computation.

○ Incremental evaluation.

Memoization and Demand Evaluation

Memoization:

When attribute is computed, result stored for later reuse.

Demand Evaluation:

Attribute computed only if needed.

No redundant computation for unused features.

Automatic Parallelization

Attributes are observationally pure:

● No side effects.

● Not order-dependent.

-> attributes can be parallelized.

Speedup depends on attribute structure.

For ExtendJ, speedup of 2x is possible.

Attribute-Oriented Compiler

How to make a full compiler with attributes?

1. Split computations into meaningful attributes.

2. What should be synthesized/inherited?

3. What should be implicitly generated with higher-order attributes?

ExtendJ Design

Specification divided into modules based on Java version.

All types are represented in AST (user-defined and primitives)

Generic types are represented with higher-order attributes.

Type and name lookup is demand-driven (no precomputation of symbol tables).

Minimal use of AST transforms (rewrites). Instead, try to use higher-order attrs.

ExtendJ Challenges

Java is a very complicated language.

The official compliance test suite is proprietary, so we use our own regression tests and

regular testing on Open Source projects to find errors.

ExtendJ is not perfectly compliant, but close enough for our needs.

Attributes have a performance cost. ExtendJ is a few times slower than javac.

ExtendJ Overview: AST

Everything is a declaration or an access:

● TypeDecl

● MethodDecl

● VarAccess

● MethodAccess

● TypeAccess

ExtendJ Overview: AST

Program ::= CompilationUnit*;

CompilationUnit ::= TypeDecl*;

abstract TypeDecl ::= BodyDecl*;
ClassDecl : TypeDecl;
InterfaceDecl : TypeDecl;

abstract Stmt;
abstract Expr;

Access : Expr;

Member methods/fields

Source files

Named type/member use

Statements (if/for/…)

ExtendJ Overview

● Name analysis

○ Classification, lookup

● Type analysis

○ Lookup, subtyping, generics, inference

● Control flow - exception handling, return checking

● Dataflow - definite assignment

● Normalization

○ Multiple declaration, enhanced for, try-with-resources, lambda

● Implicit code gen

○ Accessors, bridge methods

● Bytecode output

AST Transformation

A common problem: normalizing the AST.

34

var

int a b c

3

decl

int a

decl

int b

decl

int a

3

int a, b = 3, c;

int a;
int b = 3;
int c;

AST Transformation

Transformed AST is computed with

Higher-Order Attribute (HOA).

35

var

int a b c

3

decl

int a

decl

int b

decl

int a

3

declsint a, b = 3, c;

int a;
int b = 3;
int c;

Higher-Order Attributes

HOAs compute a new part of the AST (with attributes).

HOAs are used for:

AST transformation / normalization.

Reifying implicit constructs.

Code generation by desugaring.

x

36

Name analysis: lookup

Inherited attributes for name lookups:

lookupVariable(String name)
lookupMethod(String name)
lookupConstructor(String name)

VarAccess
lookupVariable

VarDecl

Type analysis

Type lookup works like name lookup:

lookupType(String pkg, String type)

TypeAccess
lookupType

TypeDecl

Type Analysis: Subtyping

Double dispatch:

syn boolean TypeDecl.subtype(TypeDecl other);
eq ClassDecl.subtype(TypeDecl other) =

other.subtypeClassDecl(this);

syn boolean TypeDecl.subtypeClassDecl(ClassDecl other) = false;
eq ClassDecl.subtypeClassDecl(ClassDecl other) = …;

Type Analysis: Implicits

Higher-order attributes for implicit types

(primitives, parameterized types)

class Foo<T> {}
Foo<Integer> intfoo; // Need type instance!

TypeDecl
lookupParType

ParTypeDecl

intfoo

Type Analysis: Implicits

Higher-order attributes for implicit types

(primitives, parameterized types)

nta ParTypeDecl
TypeDecl.lookupParType(ParTypeAccess) {}

ParClassDecl : ClassDecl ::=
Parameterization; TypeDecl

lookupParType

ParTypeDecl

intfoo

Extensibility

Extensibility is easy with JastAdd:

● Fine-grained control with Aspect Oriented Programming and Attributes.

● Extensions can change everything!

However, this leads to fragile extensions:

● Everything is exposed for extension

=> can not change internals without affecting existing extensions!

Open problem: ExtendJ needs to be refactored to continue development, but how do we

do this without hurting existing users?

Parallelizing ExtendJ

I have been working on parallelizing ExtendJ using concurrent attribute evaluation.

The compiler runs twice as fast (in error checking) with parallelization.

Demo

<Demo> Parallel execution.

extendj.org

Building Extensions

I wrote a Gradle plugin to easily build extensions with ExtendJ!

Gradle plugin: JastAddGradle

The extension is specified in a module specification, which is used to compile together

with some base modules from ExtendJ.

Extensions: Getting Started

A small template project to get started with building an extension:

Compiler Template Project: https://bitbucket.org/extendj/compiler-template

https://bitbucket.org/extendj/compiler-template

Demo

<Demo> Compiler Template.

https://bitbucket.org/extendj/compiler-template

extendj.org

https://bitbucket.org/extendj/compiler-template

Thank You

Thanks for listening!

Learn more:

extendj.org
jastadd.org

extendj.org

