
EDAN65: Compilers, Lecture 08

Reference Attribute Grammars
AG mechanisms, Semantic analysis

Görel Hedin
Revised: 2020-09-22

This lecture

Semantic analyzer

Intermediate
code generator

Optimizer

Target code
generator

2

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions

Context-free
grammar

Attribute
grammar

machine

runtime system

stack

heap

code
and
data

objects

activation
records

Interpreter

target code

tokens

Attributed AST

intermediate code

source code (text)

AST (Abstract syntax tree)

intermediate code

garbage
collection

Virtual
machine

Visitors
Static aspects
Attribute grammars

Example computations on an AST

3

Mul

IdExpDiv

IdExpIdExp

Name analysis: find the
declaration of an identifier

Type analysis: compute the
type of an expression

Expression evaluation: compute the
value of a constant expression

Code generation: compute an intermediate
code representation of the program

Unparsing: compute a text
representation of the program

...

Attribute mechanisms

4

Synthesized – the equation is in the same node as the attribute

Inherited – the equation is in an ancestor

Broadcasting * – the equation holds for a complete subtree

Reference * – the attribute can be a reference to an AST node.

Parameterized * – the attribute can have parameters

NTA * – the attribute is a "nonterminal" (a fresh node or subtree)

Collection * – the attribute is defined by a set of contributions, instead of by an equation.

Circular – the attribute may depend on itself (solved using fixed-point iteration)

* Treated in this lecture

Broadcasting

5

Inherited attributes
broadcasting: equations hold for complete subtrees

6

A ::= Left:B Right:B;
B ::= C D;
C;
D ::= E;
E;

eq A.getLeft().i() = 2;
eq A.getRight().i() = 3;
inh int C.i();
inh int E.i();

Draw the attributes and their values!

A

BB
The equations hold for the complete children subtrees.

C D C D

E E

Inherited attributes
broadcasting: equations hold for complete subtrees

7

A ::= Left:B Right:B;
B ::= C D;
C;
D ::= E;
E;

eq A.getLeft().i() = 2;
eq A.getRight().i() = 3;
inh int C.i();
inh int E.i();

A

BB
The equations hold for the complete children subtrees.

C D C D

E E
i = 2 i = 3

i = 2 i = 3

Inherited attributes
broadcasted equation can be overruled in subtree

8

A ::= Left:B Right:B;
B ::= C D;
C;
D ::= E;
E;

Draw the attributes and their values!

A

BB

C D C D

E E

eq A.getLeft().i() = 2;
eq A.getRight().i() = 3;
eq B.getD().i() = i() + 5;
inh int B.i();
inh int C.i();
inh int E.i();

An equation can be overruled in a subtree.
The nearest equation applies.

Inherited attributes
broadcasted equation can be overruled in subtree

9

A ::= Left:B Right:B;
B ::= C D;
C;
D ::= E;
E;

eq A.getLeft().i() = 2;
eq A.getRight().i() = 3;
eq B.getD().i() = i() + 5;
inh int B.i();
inh int C.i();
inh int E.i();

A

BB
An equation can be overruled in a subtree.
The nearest equation applies.

C D C D

E E
i = 7

i = 2

i = 2

i = 8

i = 3

i = 3

Broadcasting of inherited attributes

10

JastAdd:
Equation for inherited attribute
is "broadcasted" to complete subtree.
No "copy rules" are needed.

C

A

inh x

B

D

syn y eq c.x=y

Traditional AG:
Equation for inherited attribute
must be in the immediate parent.
Leads to "copy rules".

C

A

inh x

B

D

syn y eq c.x=y

inh x

eq d.x=x

copy rule

Most AG systems have some shorthand to avoid copy rules

Inherited attributes
shorthand for equation applying to all children

11

A ::= B C;
B ::= D;
C ::= D;
D;

eq A.getChild().i() = 8;
inh int D.i();

A

CB

The parent can write an equation that applies to all children.

D D

Draw the attributes and their values!

Inherited attributes
shorthand for equation applying to all children

12

A ::= B C;
B ::= D;
C ::= D;
D;

eq A.getChild().i() = 8;
inh int D.i();

A

CB

The parent can write an equation that applies to all children.

D DThis is equivalent to writing an equation for each child:

eq A.getB().i() = 8;
eq A.getC().i() = 8;
inh int D.i();

i = 8 i = 8

Inherited attributes
overruling is possible here too

13

A ::= B C;
B ::= D;
C ::= D;
D;

eq A.getChild().i() = 8;
inh int D.i();
eq B.getD().i() = 5;

A

CB

D D

Inherited attributes
overruling is possible here too

14

A ::= B C;
B ::= D;
C ::= D;
D;

eq A.getChild().i() = 8;
inh int D.i();
eq B.getD().i() = 5;

A

CB

D D
i = 5 i = 8

Fractions example revisited

15

Fractions example
Compute f for each L, where f is L's fraction of the sum of all val attributes.

16

S ::= N;
abstract N;
P : N ::= Left:N Right:N;
L : N ::= <val:int>;

syn float L.f() = sum()/getval();
inh int N.sum();
eq int P.getLeft().sum() = sum();
eq int P.getRight().sum() = sum();
eq int S.getN().sum() = getN().partsum();
syn int N.partsum();
eq P.partsum() =

getLeft().partsum() +
getRight().partsum();

eq L.partsum() = getval();

S

P

L
val = 1

P

L L
val = 3 val = 4

f = 0.125

f = 0.375 f = 0.5

sum = 8

sum = 8

sum = 8

sum = 8sum = 8

partsum = 8

partsum = 1

partsum = 3 partsum = 4

partsum = 7

Fractions example
Compute f for each L, where f is L's fraction of the sum of all val attributes.

17

S ::= N;
abstract N;
P : N ::= Left:N Right:N;
L : N ::= <val:int>;

syn float L.f() = sum()/getval();
inh int N.sum();
eq int P.getLeft().sum() = sum();
eq int P.getRight().sum() = sum();
eq int S.getN().sum() = getN().partsum();
syn int N.partsum();
eq P.partsum() =

getLeft().partsum() +
getRight().partsum();

eq L.partsum() = getval();

S

P

L
val = 1

P

L L
val = 3 val = 4

f = 0.125

f = 0.375 f = 0.5

sum = 8

sum = 8

sum = 8

sum = 8sum = 8

partsum = 8

partsum = 1

partsum = 3 partsum = 4

partsum = 7

Because of broadcasting, the copy equations are unnecessary.

Reference attributes

18

Reference attributes
for defining graphs on top of the AST

19

C

A

myC myB

B

A ::= B C;
B;
C;

Reference attributes
for defining graphs on top of the AST

20

C

A

myC myB

B

aspect Graph {
inh C B.myC();
inh B C.myB();
eq A.getB().myC() = getC();
eq A.getC().myB() = getB();

}

A ::= B C;
B;
C;

Attribute grammar

Note!
The defined structure is cyclic, but the
attribute dependencies are not circular.

Parameterized attributes

21

Parameterized attributes
an attribute can have one or more parameters

22

A

val=3

B

A ::= B;
B ::= <val:int>;

Example: Find out if B's val is over some given limit

Parameterized attributes
an attribute can have one or more parameters

23

A

val=3

B

syn boolean B.overLimit(int limit) =
getval() > limit;

A ::= B;
B ::= <val:int>;

overLimit(2)=true
overLimit(3)=false
overLimit(4)=false

...

Example: Find out if B's val is over some given limit

Unbounded number of attribute instances – one for each argument.
Similar to functions. But accessed values are cached.

...

Parameterized attributes
list equations can use both index and parameters

24

A ::= B*;
B;

inh boolean B.isBefore(int i);
eq A.getB(int index).isBefore(int i) = index < i;

A

B
B

List

B

Draw some isBefore attributes and their values!

Parameterized attributes
list equations can use both index and parameters

25

A ::= B*;
B;

inh boolean B.isBefore(int i);
eq A.getB(int index).isBefore(int i) = index < i;

A

B
B

isBefore(0) = false

List

B

isBefore(1) = false

isBefore(2) = true

isBefore(3) = true

isBefore(...) = ...

index = 0 index = 1 index = 2

Name analysis

26

Name analysis

27

Name analysis: bind each use of
an identifier to its declaration

class A {
int f;
int m1(int x) {

return x * f;
}

}

class B extends A {
int m2() {

System.out.println(m1(3));
}

}

Name binding: a reference from
a use to its declaration

Scope of a declaration: the parts
of the program where it is visible.

Name binding rules: also known as
scope rules or visibility rules.

Name analysis

28

Name analysis: bind each use of
an identifier to its declaration

class A {
int f;
int m1(int x) {

return x * f;
}

}

class B extends A {
int m2() {

System.out.println(m1(3));
}

}

Name binding: a reference from
a use to its declaration

Typically, there are rules for
• blocks, nesting, inheritance
• name collisions, shadowing
• declaration order

(insignificant or declare-before-use?)
• visibility restrictions (private, public, ...)
• qualified access (a.b)
• overloading, namespaces
• ...

Scope of a declaration: the parts
of the program where it is visible.

Name binding rules: also known as
scope rules or visibility rules.

Name binding: Blocks

29

class A {
int f;
int m1(int x) {

int a = 4;
int f = a + 5;
return x * f + b;

}
}

class B extends A {
int m2() {

System.out.println(m1(3));
}

}

...

Block: a syntactic unit containing
declarations and statements.

Can be nested. Called block strucure or
lexical nesting.

Declarations in inner blocks shadow
declarations in outer blocks

Declaration ordering can be
• insignificant, or
• declare-before-use

Name binding: Blocks

30

class A {
int f;
int m1(int x) {

int a = 4;
int f = a + 5;
return x * f + b;

}
}

class B extends A {
int m2() {

System.out.println(m1(3));
}

}

...

Block: a syntactic unit containing
declarations and statements.

Can be nested. Called block strucure or
lexical nesting.

Declarations in inner blocks shadow
declarations in outer blocks

Declaration ordering can be
• insignificant, or
• declare-before-use

Name binding: Inheritance

31

class A {
int x;
class AA {

int y;
}

}

class B extends A {
int y, z;
class BB extends AA {

int v;
void m() {

int w = x + y + z + v;
}

}
}

...

Inheritance and block nesting
can be combined.

In what block order should we
look for the declaration of x?

Which declaration of y is y
bound to?

Name binding: Inheritance

32

class A {
int x;
class AA {

int y;
}

}

class B extends A {
int y, z;
class BB extends AA {

int v;
void m() {

int w = x + y + z + v;
}

}
}

...

Inheritance and block nesting
can be combined.

In what block order should we
look for the declaration of x?

Which declaration of y is y
bound to?

m
BB
AA
B
A
globally

AA.y
since inheritance binds tighter
than lexical nesting.

Name binding: Qualified access

33

class A {
int m() { ... };

}

class B extends A {
void m() {

A r = new B();

System.out.println(r.m());
}

}

...

Qualified access (dot notation)

The binding of m depends on the
type of r.

Name binding: Qualified access

34

class A {
int m() { ... };

}

class B extends A {
void m() {

A r = new B();

System.out.println(r.m());
}

}

...

Qualified access (dot notation)

The binding of m depends on the
type of r.

Recall:
Representing name bindings in an AST

35

IntExp

Assign

IdUse

Block

IdDeclIntType

VarDecl

ID="a"

{
int a;
a = 3;

}

ID="a" INT="3"IdDecl for declared names
IdUse for used names decl

An attribute decl represents the name binding.

Recall:
Computing name bindings imperatively

36

IntExp

Assign

IdUse

Block

IdDeclIntType

VarDecl

ID="a"

{
int a;
a = 3;

}

ID="a" INT="3"

Use a symbol table data structure:
For each block, a map from visible names to declarations.
Use a stack of maps to handle nested blocks.

decl

Algorithm:
Traverse the AST
push/pop symbol table when entering/leaving a block
add/lookup identifiers when encountering IdDecls/IdUses

Problems with the imperative approach

• Need to write an algorithm that computes things in the right
order.

• What if we have more complex name binding rules?
Need a more elaborate symbol table.
The algorithm may get very complex.

• What if we extend the language?
Need to change the algorithm.

Solution: Attribute grammars – a declarative approach

37

The Lookup Pattern
for Name analysis

38

Name analysis using RAGs

39

IntExp

Assign

IdUse

Block

IdDeclIntType

VarDecl

ID="a" ID="a" INT="3"

syn decl

Program

Think declaratively!!
1. What attributes would I like the nodes to have?
2. Where is the information that is needed to define the

attribute?
3. Is some of it in the node or its subtree? Make the attribute

synthesized. Write its equation. Introduce new helper
attributes as needed.

4. Is all of it outside the node and its subtree? Make it
inherited.

5. To define an inherited attribute, locate the closest ancestor
which has some of the needed information in its subtree.
Put the equation there. Introduce new helper attributes as
needed.

Synthesized – value defined in the node
Inherited – value defined in a parent

Name analysis using RAGs

40

IntExp

Assign

IdUse

Block

IdDeclIntType

VarDecl

ID="a" ID="a" INT="3"

syn decl
inh lookup(String)

Program

Think declaratively!!
1. What attributes would I like the nodes to have?
2. Where is the information that is needed to define the

attribute?
3. Is some of it in the node or its subtree? Make the attribute

synthesized. Write its equation. Introduce new helper
attributes as needed.

4. Is all of it outside the node and its subtree? Make it
inherited.

5. To define an inherited attribute, locate the closest ancestor
which has some of the needed information in its subtree.
Put the equation there. Introduce new helper attributes as
needed.

eq child.lookup(String) = ...

eq decl = lookup(ID)

Synthesized – value defined in the node
Inherited – value defined in a parent

The Lookup pattern
for name analysis in RAGs

41

syn decl – the name binding
inh lookup(String) – finds the declaration
syn localLookup(String) – looks locally
eq child.lookup(String) –

delegates to localLookup and lookup attributes,
according to scope rules.

Use

Block

Decl
ID="a"

syn decl

Program

Block

Decl

General pattern for name analysis.
Can handle block structure, inheritance, qualified access, ...

The Lookup pattern
for name analysis in RAGs

42

syn decl – the name binding
inh lookup(String) – finds the declaration
syn localLookup(String) – looks locally
eq child.lookup(String) –

delegates to localLookup and lookup attributes,
according to scope rules.

Use

Block

Decl
ID="a"

syn decl
inh lookup(String)

Program

eq child.lookup(String) = ...
Block

Decl

syn localLookup(String)
inh lookup(String)

eq child.lookup(String) = ...
syn localLookup(String)

inh lookup(String)

eq child.lookup(String) = NoDecl

General pattern for name analysis.
Can handle block structure, inheritance, qualified access, ...

Example implementation in JastAdd

43

Program ::= Block;
Block : Stmt ::= Decl* Stmt*;
Decl ::= Type IdDecl;
IdDecl ::= <ID:String>;
Type;
abstract Stmt;
Assign : Stmt ::= To:IdUse From:IdUse;
IdUse ::= <ID:String>;

Abstract grammar:

IdUse

Block

Decl
ID="a"

syn decl
inh lookup(String)

Program

Block

Decl

syn localLookup(String)
inh lookup(String)

syn localLookup(String)
inh lookup(String)

Example implementation in JastAdd

44

Program ::= Block;
Block : Stmt ::= Decl* Stmt*;
Decl ::= Type IdDecl;
IdDecl ::= <ID:String>;
Type;
abstract Stmt;
Assign : Stmt ::= To:IdUse From:IdUse;
IdUse ::= <ID:String>;

syn IdDecl IdUse.decl() = lookup(getID());

inh IdDecl IdUse.lookup(String s);

eq Block.getStmt().lookup(String s) {
IdDecl d = localLookup(s);
if (d != null) return d;
return lookup(s);

}

inh IdDecl Block.lookup(String s);

eq Program.getBlock().lookup(String s) {
return null;

}

syn IdDecl Block.localLookup(String s) {
for (Decl d: getDecls()) {

if (d.getIdDecl().getID().equals(s))
return d.getIdDecl();

}
return null;

}

Abstract grammar: Attributes and equations:

IdUse

Block

Decl
ID="a"

syn decl
inh lookup(String)

Program

Block

Decl

syn localLookup(String)
inh lookup(String)

syn localLookup(String)
inh lookup(String)

The Local Map pattern
replace repeated search by map

45

More efficient implementation of localLookup

46

syn IdDecl Block.localLookup(String s) {
for (Decl d: getDecls()) {

if (d.getIdDecl().getID().equals(s))
return d.getIdDecl();

}
return null;

}

What happens if there are 1000
elements in the declaration list,
and one use for each?
What is the complexity?

More efficient implementation of localLookup

47

syn IdDecl Block.localLookup(String s) {
for (Decl d: getDecls()) {

if (d.getIdDecl().getID().equals(s))
return d.getIdDecl();

}
return null;

}

What happens if there are 1000
elements in the declaration list,
and one use for each?
What is the complexity?

Linear search for each declaration gives
quadratic time complexity: O(n2)

More efficient:
Use a local hashmap which
is built on the first access.
After that each access is
done in constant time.
Resulting complexity: O(n)

syn IdDecl Block.localLookup(String s) {
return localMap().get(s);

}

syn Map<String,IdDecl> Block.localMap() {
Map<String,IdDecl> map = new HashMap<String,IdDecl>();
for (Decl d: getDecls()) {

IdDecl id = d.getIdDecl();
map.put(id.getID(), id);

}
return map;

}

Nonterminal attributes

48

Non-terminal attributes (NTAs)
also known as higher-order attributes

49

Useful for reifying implicit constructs
(make them explicit in the AST), like:
• Missing declarations
• Unknown types
• Primitive types and functions

C

B

D

An NTA is both a node and an attribute.

The right-hand side of its defining equation must
be a fresh (new) object (not part of any AST).

n

an NTA

A

Non-terminal attributes (NTAs)
also known as higher-order attributes

50

Useful for reifying implicit constructs
(make them explicit in the AST), like:
• Missing declarations
• Unknown types
• Primitive types and functions

C

B

D

An NTA is both a node and an attribute.

The right-hand side of its defining equation must
be a fresh (new) object (not part of any AST).

syn nta D B.n() = new D();

n

an NTA

An NTA is also known as a higher-order attribute:
It can itself have attributes.
The owning node (or its ancestors) must define
the inherited attributes of the NTA.

A

inh i

eq child.i = ...

Warning! Remember to use fresh objects!
If you reuse existing nodes for NTAs, the AST will be inconsistent.
JastAdd does not check this.

NTA example

51

A

B

A ::= B;
B;
C ::= D;
D;

syn nta C B.n() = new C(new D());

Draw the n attribute and its value!

NTA example

52

A

B

C

n

D

A ::= B;
B;
C ::= D;
D;

syn nta C B.n() = new C(new D());

Nonterminal attributes (NTAs)

53

A

B

An NTA may itself have attributes.
C

n

D

A ::= B;
B;
C ::= D;
D;

syn nta C B.n() = new C(new D());

inh int C.x();
eq B.n().x() = 5;
syn int B.y() = n().z() * 3;
syn int C.z() = x() + 2;

Draw the x, y, and z attributes and their values!

Nonterminal attributes (NTAs)

54

A

B

An NTA may itself have attributes.
C

n

D

A ::= B;
B;
C ::= D;
D;

syn nta C B.n() = new C(new D());

inh int C.x();
eq B.n().x() = 5;
syn int B.y() = n().z() * 3;
syn int C.z() = x() + 2;

y=21

x=5
z=7

The Null Object Pattern

55

The Null object pattern

56

Null is not a very attractive way of representing
a missing declaration. Use a real object instead.
Give the object suitable properties (attributes).
The code becomes simpler.

In RAGs: use null objects for missing
declarations, unknown types, etc.

See
http://en.wikipedia.org/wiki/Null_Object_pattern

The Null object pattern

57

Null is not a very attractive way of representing
a missing declaration. Use a real object instead.
Give the object suitable properties (attributes).
The code becomes simpler.

In RAGs: use null objects for missing
declarations, unknown types, etc.

syn IdDecl IdUse.decl() = lookup(getID());

inh IdDecl IdUse.lookup(String s);

eq Block.getStmt().lookup(String s) {
IdDecl d = localLookup(s);
if (!d.isUnknown()) return d;
return lookup(s);

}

syn IdDecl Block.localLookup(String s) {
for (Decl d: getDecls()) {

if (d.getIdDecl().getID().equals(s))
return d.getIdDecl();

}
return unknownDecl();

}

inh IdDecl Block.lookup(String s);

eq Program.getBlock().lookup(String s) {
return unknownDecl();

}

But how can we implement null objects like
unknownDecl() in attribute grammars?

See
http://en.wikipedia.org/wiki/Null_Object_pattern

Use an NTA for the Null object

58

Add an UnknownDecl object to the AST
using a non-terminal attribute

IdUse

Assign

IdUse

Block

IdDeclType

Decl

ID="a" ID="a" ID="b"

Program

ListList

UnknownDecl

unknownDecl

Use an NTA for the Null object

59

Add an UnknownDecl object to the AST
using a non-terminal attribute

IdUse

Assign

IdUse

Block

IdDeclType

Decl

ID="a" ID="a" ID="b"

Program

ListList

UnknownDecl
UnknownDecl : IdDecl;

Extend the abstract grammar:

syn boolean IdDecl.isUnknown() = false;
eq UnknownDecl.isUnknown() = true;

Implement the special behavior:

syn nta UnknownDecl Program.unknownDecl() =
new UnknownDecl("<Unknown>");

Add the NTA:

But how can we make the
UnknownDecl object known
throughout the AST?

unknownDecl

The Root Attribute Pattern

60

The Root Attribute pattern

61

E

C

D

S
Intent:
Make an attribute in the root visible
throughout the AST.

A

B

syn x

would like to use x here

The Root Attribute pattern

62

E

C

D
inh x

S
Intent:
Make an attribute in the root visible
throughout the AST.

A

B

syn x

Solution:
Add an equation in the root,
propagating the value to the children.

Expose the attribute by declaring it as
inherited where it is needed.

eq S.getA().x() = x();

inh T E.x();

The Root Attribute pattern
variant: expose the attribute in ASTNode

63

E

C

D
inh x

S
Intent:
Make an attribute in the root visible
throughout the AST.

A

B

syn x

Solution:
Add an equation in the root,
propagating the value to the children.

Expose the attribute by declaring it as
inherited where it is needed.

Exposing it in ASTNode will make it
available in all nodes.

eq S.getChild().x() = x();

inh T ASTNode.x();

inh x

inh x

inh x

inh x

Propagating unknownDecl
using the Root Attribute Pattern

64

IdUse

Assign

IdUse

Block

IdDeclType

Decl

ID="a" ID="a" ID="b"

Program

ListList

UnknownDecl

unknownDecl

decl

Propagating unknownDecl
using the Root Attribute Pattern

65

IdUse

Assign

IdUse

Block

IdDeclType

Decl

ID="a" ID="a" ID="b"

Program

ListList

UnknownDecl
eq Program.getBlock().unknownDecl() =

unknownDecl();

inh UnknownDecl Block.unknownDecl();

unknownDecl

unknownDecl

decl

Type analysis

66

Type analysis

67

Type analysis: compute the type
of each expression

IdUse

Assign

IdUse

Block

IdDeclType

Decl

ID="a" ID="a" ID="b"

Program

ListList

UnknownDecl

unknownDecl

decldecl

Type analysis

68

Type analysis: compute the type
of each expression

IdUse

Assign

IdUse

Block

IdDeclType

Decl

ID="a" ID="a" ID="b"

Program

ListList

UnknownDecl

unknownDecl

decldecl
type type

syn Type Expr.type();

Add a type attribute to Expr

inh Type IdDecl.type();
eq Decl.getIdDecl().type() = getType();
eq Program.unknownDecl().type() =

unknownType();

Define the type attribute for IdDecls

type

type

...

Define unknownType as an NTA

unknownType

...

eq IdUse.type() = decl().type();

Implement it for IdUses

Type checking

69

Type checking: Check if types
are used correctly

IdUse

Assign

IdUse

Block

IdDeclType

Decl

ID="a" ID="a" ID="b"

Program

ListList

UnknownDecl

unknownDecl

decldecl
type type

type

type

unknownType

...

Type checking

70

Type checking: Check if types
are used correctly

IdUse

Assign

IdUse

Block

IdDeclType

Decl

ID="a" ID="a" ID="b"

Program

ListList

UnknownDecl

unknownDecl

decldecl
type type

syn boolean Assign.compatibleTypes() =
getTo().type().equals(getFrom().type());

First attempt:

type

type

unknownType

...

Problem with first attempt: Errors are propagated unnecessarily:
Name declaration errors will be give type checking errors as well.
Would be nicer to view unknownType as compatible with all other types.

syn boolean Assign.compatibleTypes() =
getFrom().type().isUnknownType() ||
getTo().type().isUnknownType() ||
getTo().type().equals(getFrom().type());

Second attempt:

Collection attributes

71

Use for values combined from many small parts
spread out over the tree.

Collection attributes
motivation

72

A collection attribute is defined by contributions,
instead of by a single equation.

B

A

Cc

collection
attribute

D E contribution

Use for values combined from many small parts
spread out over the tree.

Collection attributes
motivation

73

A collection attribute is defined by contributions,
instead of by a single equation.

Example uses:
- collect compile-time errors in a program
- collect what uses are bound to a specific declaration
- count the number of if-statements in a method

When a collection attribute is accessed, the attribute evaluator will automatically
traverse the AST and find the contributions.

B

A

Cc

collection
attribute

D E contribution

Collection attribute
structure

74

N

R

The method m must be commutative

A contribution from a node type M:

c

collection
attribute

M contribution
valueexp
Nrefexp

Declaration of collection attribute c in node type N:
coll T N.c() [freshexp] with m root R;

M contributes valueexp
when condition
to N.c()
for Nrefexp

Collection attribute
optional elements in the definition

75

N

R

The method m must be commutative

• if "[freshexp]" is left out, the default constructor for T
will be used.

• if "with m" is left out, the method name "add" is used
• if "root R" is left out, R is set to the type of the root node

A contribution from a node type M:

c

collection
attribute

M contribution
valueexp
Nrefexp

Declaration of collection attribute c in node type N:
coll T N.c() [freshexp] with m root R;

M contributes valueexp
when condition
to N.c()
for Nrefexp

• if "when condition" is left out, the value will always be added
• "for Nrefexp" can be left out if N=R

Collection attribute
structure

76

N

R

• T is the type of c
• freshexp is a fresh T object (empty collection)
• m is a commutative mutating method used for

adding contributions to c
• R is an AST node type, identifying the subtree

where contributions can be

A contribution from a node type M:

c

collection
attribute

M contribution
valueexp
Nrefexp

Declaration of collection attribute c in node type N:
coll T N.c() [freshexp] with m root R;

• valueexp is the value to be contributed
• cond is a condition indicating if

valueexp should be added or not
• Nrefexp is a reference to an N node

M contributes valueexp
when condition
to N.c()
for Nrefexp

Evaluation algorithm
When c is accessed for the first time:
• the empty collection is created using freshexp
• the subtree at the upward nearest R is

traversed, and all contributions are added to c
• c is cached

Collect errors

77

Example: Collect errors

78

Error checking: collect all errors

IdUse

Assign

IdUse

Block

IdDeclType

Decl

ID="a" ID="a" ID="b"

Program

ListList

UnknownDecl

unknownDecl

decldecl
type type

type

type

unknownType

...

errors

We would like an attribute errors
in the root, containing all error
messages.

We would like an easy way to
"contribute" different kinds of
errors from different nodes in
the AST.

contribute error

Example: Collect errors

79

Error checking: collect all errors

IdUse

Assign

IdUse

Block

IdDeclType

Decl

ID="a" ID="a" ID="b"

Program

ListList

UnknownDecl

unknownDecl

decldecl
type type

type

type

unknownType

...

errors

contribute error

Example: Collect errors

80

Error checking: collect all errors

IdUse

Assign

IdUse

Block

IdDeclType

Decl

ID="a" ID="a" ID="b"

Program

ListList

UnknownDecl

unknownDecl

decldecl
type type

type

type

unknownType

...

errors

contribute error

coll Set<String> Program.errors()
[new HashSet<String>()]
with add
root Program;

Declare the errors collection:

IdUse contributes "Undeclared variable"
when decl().isUnknown()
to Program.errors()
for theProgram();

Contribute an error

Propagate a reference to the Program root:
(Root Attribute pattern):

eq Program.getChild().theProgram() = this;
inh Program ASTNode.theProgram();

Example: Collect errors

81

Error checking: collect all errors

IdUse

Assign

IdUse

Block

IdDeclType

Decl

ID="a" ID="a" ID="b"

Program

ListList

UnknownDecl

unknownDecl

decldecl
type type

type

type

unknownType

...

errors

contribute error

coll Set<String> Program.errors()
[new HashSet<String>()]
with add
root Program;

Declare the errors collection:

IdUse contributes "Undeclared variable"
when decl().isUnknown()
to Program.errors()
for theProgram();

Contribute an error

Propagate a reference to the Program root:
(Root Attribute pattern):

eq Program.getChild().theProgram() = this;
inh Program ASTNode.theProgram();

because of defaults, these optional parts can be skipped in this case

The compiler main program
becomes very simple when using AGs:

82

// Sketch:
public class Compiler {

public static void main(String[] args) {
// Construct the AST:
Program program = new Parser().parse(new Scanner());
// Use attributes:
if (program.errors().isEmpty()) {

printCode(program.code());
}
else {

printErrors(program.errors());
}

}
}

All attributes (e.g., code and errors) are automatically available as soon
as the AST (program) has been constructed by the parser.
Calling an attribute causes it to be evaluated (on-demand evaluation).

Summary questions:
reference attributes, name analysis

83

• What is broadcasting?
• What is a reference attribute grammar?
• What is a reference attribute?
• What is a parameterized attribute?
• What is name analysis?
• What is a name binding?
• What does scope mean?
• Give examples of some typical name binding rules.
• What does ”declare-before-use” mean?
• What is qualified access?
• How does the Lookup pattern work?

Summary questions:
NTAs, type checking, collection attributes, error checking

84

• What is a nonterminal attribute (NTA)?
• What is the Null Object pattern?
• How does the Root Attribute pattern work?
• Why is it useful to implement missing declarations and unknown types as AST

nodes?
• What is type analysis and type checking?
• How can unnecessary error propagation be avoided?
• What is a collection attribute?
• How can a collection of error message be implemented?

