
EDAN65: Compilers, Exercise set E-13

Problems
Görel Hedin

Revised: 2019-10-14

2

A language L is described by following context-free
grammar:

p1: E -> E "+" E
p2: E -> E "*" E
p3: E -> ID

where E is the start symbol, and ID is a terminal symbol
representing an identifier. Prove by writing down a left-
most derivation that

ID "+" ID "*" ID

belongs to L. For each derivation step, show which
production was used.

Problem E13-1

3

Consider the following context-free grammar for a textual
representation of a graph with labelled nodes and edges. The
start symbol is Graph:

Graph -> ElementList
ElementList -> Element ElementList
ElementList -> ε
Element -> Node
Element -> Edge
Node -> ID
Edge -> ID "(" ID "->" ID ")"

The terminal ID has the following regular expression definition:
ID = [a-z]+

Draw the parse tree for the following graph:
a e(a->b)

Problem E13-2

4

Problem E13-3

Consider the following context-free grammar for a
textual representation of a graph with labelled nodes
and edges. The start symbol is Graph:

p1: Graph -> ElementList
p2: ElementList -> Element ElementList
p3: ElementList -> ε
p4: Element -> Node
p5: Element -> Edge
p6: Node -> ID
p7: Edge -> ID "(" ID "->" ID ")"

This grammar is not LL(1). Explain why.

5

Problem E13-4

The following grammar contains a common prefix.
Transform the grammar to an equivalent grammar
where the common prefix is eliminated.

Graph -> ElementList
ElementList -> Element ElementList
ElementList -> ε
Element -> Node
Element -> Edge
Node -> ID
Edge -> ID "(" ID "->" ID ")"

6

Problem E13-5
The following grammar is left-recursive and therefore
not LL(1). Transform the grammar to an equivalent
grammar that is LL(1). Argue for that your resulting
grammar is LL(1).

T -> T "*" F
T -> F
F -> ID
F -> "(" T ")"

7

Consider the following context-free grammar for a
textual representation of a graph with labelled nodes
and edges. The start symbol is G:

p1: G -> ElemList
p2: ElemList -> Elem ElemList
p3: ElemList -> ε
p4: Elem -> Node
p5: Elem -> Edge
p6: Node -> ID
p7: Edge -> ID "(" ID "->" ID ")"

The terminal ID has the following regular expression
definition:

ID = [a-z]+

Show how an LR parser would parsing the following
program:

a e(a->b)
Show the stack contents, the remaining input, and the
parsing action taken in each step.

Problem E13-6

8

Consider the following abstract grammar for a graph of
nodes and edges.

G ::= Element*;
abstract Element;
Node:Element ::= <ID>;
Edge:Element ::= Src:NodeUse Dst:NodeUse;
NodeUse ::= <ID>;

Suppose there is an attribute
Node NodeUse.maybeNode()

that refers to the node of the same name as the
NodeUse, or to null if there is no such node.

Define a boolean synthesized attribute wellFormed() for
Edge nodes, that is true iff both its source and
destination nodes exist.

Problem E13-7

9

Consider the following abstract grammar for a graph of
nodes and edges.

G ::= Element*;
abstract Element;
Node:Element ::= <ID>;
Edge:Element ::= Src:NodeUse Dst:NodeUse;
NodeUse ::= <ID>;

Suppose there is an attribute
Node NodeUse.maybeNode()

that refers to the node of the same name as the
NodeUse, or to null if there is no such node.

To represent missing nodes, introduce a new AST class
UnknownNode, and create an object of this class as an
NTA of the root.

Define a new attribute
Node NodeUse.node()

that refers to the UnknownNode object instead of to null.

Problem E13-8

10

Consider the following abstract grammar for a graph of
nodes and edges.

G ::= Element*;
abstract Element;
Node:Element ::= <ID>;
Edge:Element ::= Src:NodeUse Dst:NodeUse;
NodeUse ::= <ID>;

Implement an attribute
Node NodeUse.maybeNode()

that refers to the node of the same name as the
NodeUse, or to null if there is no such node.

Problem E13-9

11

Consider the following abstract grammar for a graph of
nodes and edges.

G ::= Element*;
abstract Element;
Node:Element ::= <ID>;
Edge:Element ::= src:NodeUse dst:NodeUse;
NodeUse ::= <ID>;

Define an attribute
int G.nbrOfEdges()

that counts the number of edges in the graph. Use a
collection attribute to compute the attribute. You can use
a class Counter with the following implementation:

public class Counter {
private int count = 0;
public void add(int n) {

count = count + n;
}
public int count() {

return count;
}

}

Problem E13-10

12

Consider the following abstract grammar for a graph of
nodes and edges.

G ::= Element*;
abstract Element;
Node:Element ::= <ID>;
Edge:Element ::= src:NodeUse dst:NodeUse;
NodeUse ::= <ID>;

Suppose there is an attribute
Node NodeUse.maybeNode()

that refers to the node of the same name as the
NodeUse, or to null if there is no such node.

If there is an edge a->b, we say that the node b is a target
of a. Implement a collection attribute Node.targets()
containing all the target nodes for a given node.

For sets, you may use the Java type HashSet.

Problem E13-11

13

Consider the following abstract grammar for a graph of
nodes and edges.

G ::= Element*;
abstract Element;
Node:Element ::= <ID>;
Edge:Element ::= Src:NodeUse Dst:NodeUse;
NodeUse ::= <ID>;

If there is an edge a->b, we say that the node b is a target
of a. Suppose there is a collection attribute

Set<Node> Node.targets()
containing all the target nodes for a given node.

The reachable set of a node is the transitive set of target
nodes. Implement the reachable set as a circular
attribute. You can use the Java class HashSet with
operations add and addAll, for adding one element or a
set of elements.

Problem E13-12

14

class Account {
int balance = 0;
void deposit(int amount) {

balance = balance + amount;
}
void withdraw(int amount) {

if (amount > balance)
overdraft(amount – balance);

else
balance = balance – amount;

}
void overdraft(int am) {

/* PC */
System.out.println

("Overdraft with amount "+am);
}

}
void test() {

Account a = new Account();
a.deposit(100);
a.withdraw(150);

}

Suppose that test() is called. Draw the situation on the stack
and heap at /* PC */. Your sketch should include dynamic
link, fields, local variables, "this" pointer, and arguments
including their values. Arguments should be passed on the
stack. Explain the contents of the withdraw activation.

Problem E13-13

15

class Figure {
int area() { return 0; }

}
class Rectangle extends Figure {

int w;
int h;
void set(int w, int h) {

this.w = w;
this.h = h;

}
int area() {

return w * h;
}
...

}

Suppose this language is implemented using virtual
tables. Draw a sketch over the memory showing a
Rectangle object, its class descriptor, and its code. Your
sketch should include fields, class link, virtual table, and
methods.

Problem E13-14

16

class Figure {
int area() { return 0; }

}
class Rectangle extends Figure {

int w;
int h;
void set(int w, int h) {

this.w = w;
this.h = h;

}
int area() {

return w * h;
}
...

}
void m(Figure f) {

int a;
a = f.area(); // S

}

This language is implemented using virtual tables. Draw
the situation on stack and heap at statement S, right
before the call to f.area() is made. Assume f is a Rectangle
object and include the class descriptor in your sketch.
Sketch the code for the statement S. Use x86 instructions
according to the assignment 6 cheatsheet. Add
comments to the code, explaining what it does.

Problem E13-15

