GPU Compiler
Construction at
Arm

Karl Hylén, Compiler Engineer

Erik Hogeman, Compiler Engineer

© 2017 Arm Limited

Agenda

About Arm and Mali

Graphics APIs and Rasterization

The Compiler

Day-to-day Challenges of a GPU Compiler Engineer

Opportunities for Students at Arm

Wrap up and Questions

2 © 2017 Arm Limited q r m

+ + + + + + + + +
+ + + + + + + + +
+ + + + + + + + +
+ + + + + + + + +
+ + + + + + + + +
+ 4 + 4 + + 4 + +
+ + + + + + + + +

© 2017 Arm Limited

arm

+ & + & 4 + & +

What do we do, in Lund in Specific?

Part of MPG — Media Processing Group
Products:

- Mali GPUs

— Mali VPUs (Video Processing Units)

SW engineering
— Including the compiler

— Also hardware modelling, video driver etc.

HW engineering

— System design, RTL design and verification etc.

Test development

- Both SW and HW

4 © 2017 Arm Limited a r m

Arm’s Partnership Model

AND CONSO RTIA PARTNERS

RS : NERS
SHIGGN PARTESS DESIGN SUPPORT PART SOFT\'»’ARE,TRAINNG

o ANYRA

w2 4 ocay O

e < Mirasery (1L &) B30 pere o =
= Tolcgw metx am st o, © CEW X et BB = s A S o [e 1006 0 e T = e e W s s G
LS — T, VTR . 1ONIC

LPC Toale™ k4 u.

AT o~ "
sod @ TATERGY <=, Qun\ ay

e 36 .-;,m:m.-;-— (z'wr - TES S8 @ H e morcavens [EINEY | Ot .- ~~(P e A
whmee b 4 S e ICOUIY CAACLE B v wanee U0 0an gt JSune
- :—m waay “r‘””w_'_ _'tu-u ur» moowmast T3
Vagra b L2 ss ‘.rwy_$. s ¢ : 5_‘”‘",' L Couthit ‘hnﬂ'& “ \umww-—-’!——‘ m
’ “"""“ <2 i qam r:vzn o) A FOON W SR el e TUC 20 ! o,
‘?«-nuun £395 Gan'can pamagonic Teesnas BRACR @co g @ VR o ps e A ., Fi smmms et
paey [P am- z'D‘CQO'O/DA?Y ST m G e B0 m\ﬂf- -_:;v;. OSW, a0y MIIOSOM 5 ie &M ubuntu®
e ot e G Sy e e -) Y =) =8
—— lnr e Sy swrr"m- iy "'h:-*"" o P o q-\m eany ,Lmnn e : 3
ir—— . -
»n-w. n ’ e o waao }u_n e vkt s o ‘ﬁ? 31 <. ﬂ -n=) .__} avan
soncs = Fpch, T rowson TOBNIBA “ Giee @ tamy -n 2 i T & - PN
e B e Ot o b £ oo 9 , :
cvc e NS s g O~ e Voo WET Pl o i, ; m’ a2 3 Sl ¥~v~< ESPIC("'g fbaw
FXI & -:—;«4\ i S -)/ ! e B ™™ d;.. M et ALDKS) AN oy @ e <P - ,.dffu‘“ mug%mm;}ﬁ' - T
e @ BLSI Pl T Sinane P N S S AR on R e L - % T gy o2 @ WO KRG P08
SECT Evbmame PN A nuvoren Jarcite. n-m PR = s CME WM gy - ot e :
A I o aaa ol 1 — ivn, § S g @ B Mok Avocty dhoe ?&0“'- ™
2 v i i R Sk ey od.' Mezts. xivoly
0 ann 2 Q::y L. ° 2, oo e, Gl = o fhome CiAbstar 4. 3 be "m 'O iy =y

~
TROFLEX Ocpare THAG S S

e o, DT W P iy o

WV SHinc l‘--p
o & .u)h:,q 7 Hedan SLexraomey

o b S Spd] Atmel-nu_oos
Joite K

BIOWL ey

anarag)
s Aty R NOOD - = Mienyisg
s 100> BER
Pavingd S $ MOXHp
Selaass
T Ll Sl T, M.g
Roa "

S -r.*'.,'.. R
..<, @m MYl oy) mm Pisves

NOWKIA oy °Mv-.¢ R T - 11
: Sona et i T Gy

owne 1 e
- '

5 © 2017 Arm Limited

Arm’s partners shipped
nearly 15 billion chips with
ARM technology in 2015.

Over 86 billion chips
accumulated over 26 years

arm

6

Arm Offices Worldwide

© 2017 Arm Limited

North America

e San Jose, CA USA
(Main Regional Office)
Irvine, CA USA

San Diego, CA USA
Boston, MA USA
Austin, TX USA

Plano - Keil, TX USA
Olympia, WA USA
Seattle, WA USA

Europe

Cambridge, UK - Global HQ
Blackburn, UK
Maidenhead, UK

Sheffield, UK

Oulu, Finland

Grenoble, France

Paris, France

Sophia Antipolis, France
Grasbrunn, Germany
Sentjernej, Slovenia
Lund, Sweden
Trondheim, Norway

2

Asia

Shanghai, China

(Main Regional Office)
Beijing, China
Shenzhen, China
Bangalore, India
Noida, India
Yokohama, Japan
Seoul, S. Korea

Taipei, Taiwan
Hsinchu, Taiwan

arm

Graphics APIs an
Rasterization

© 2017 Arm Limited

arm

+ + + + + + + +

GPUs and Software

GPUs are built to support specific graphics (and compute) APIs

- Hardware s thus always licensed together with a software driver, implementing the
interface to the hardware through these APIs

- Example: OpenGL, DirectX, Vulkan, OpenCL

- The graphics API provides a set of C function calls that implements a technique called
rasterization

8 © 2017 Arm Limited q r m

9

The Rasterization Pipeline

3D models to be rendered consist of vertices and primitives (triangles)

Fragment stage: compute a color for each resulting fragment (pixel)

Vertex Stage

© 2017 Arm Limited

Rasterizer stage: Compute covered pixels from the resulting vertex positions

Vertex stage: Transform the position of each vertex depending on the camera

>

Fragment Stage

arm

10

The Mali Shader Compiler

The Mali Shader Compiler transforms ESSL source into binary

executables for the GPU

« Compiler is just one part of a larger driver

— Development requires cooperation with other software teams

— Compiler is shipped together with rest of driver on mobile phones and other

devices

Mali Driver

© 2017 Arm Limited

arm

Compiler Performance

- Competitors implement the same APIs, compete on performance

- The code is almost always hot

- If the compiler perfoms badly, it will reduce the frame rate

11 © 2017 Arm Limited a r m

The C

+

© 2017 Arm Limited
E

+

ompiler

S

4

.

+

S

arm

The Compiler Frontends

We implement several frontends with many different configurations

« OpenGL ES Shading Language

— Defines several shader types, versions and extensions on top of the core language
« SPIR-V (intermediate representation used in Vulkan)

— The newest graphics frontend, feature-wise similar to OpenGL ES Shading Language
- OpenCL/Vulkan Compute Kernels

— C/C++-style compute language

13 © 2017 Arm Limited q r m

OpenGL ES Shading Language

Most widely used graphics programming language for mobile

e — [
- -

- Six shader stages

- Several extensions on top
of the core language

14 © 2017 Arm Limited q r m

OpenGL ES Shading Language Features

Core language is similar to C, but with some differences

- Significantly simpler (no pointers or recursive function calls)
- Provides an in/out interface for each stage in the graphics pipeline
— In/out variables to communicate with other stages
— Read-only memory that is shared between threads
— Global memory that can be both read and written
- The language defines a large number of built-in functions
- Mathematical functions, such as 'cos' and 'normalize’
— Texture lookups, to read color values from textures
— Atomic operations

- Available features can be configured through extensions

15 © 2017 Arm Limited q r m

16

Shader Examples

Vertex Shader

Shader

; —
interface
Main
pan >

unction
Position

—

transform
Vertex 7
passthrough

#version 310 es

uniform mat4 mvp;
in vec4 position;

in vec2 texcoord_in;
out vec2 texcoord;

void main()

{
gl_Position = mvp * position;
texcoord = texcoord in;

}

© 2017 Arm Limited

Default
precision

Shader
interface

Texture
lookup and
color write.

Fragment Shader

#version 310 es
precision mediump float;

uniform mediump sampler2D tex;

————3 in vec?2 texcoord;

— >

out vec4 color;

void main()
{

color = texture(tex, texcoord);
}

arm

Vulkan and SPIR-V

Vulkan is the newest graphics API, and provides a slightly different approach to
programmable pipeline stages
- Uses the “Standard Portable Intermediate Representation”, or SPIR-V, as shader language

- An intermediate representation is typically used in compilers to represent code closer to assembly
than the original source, but still high level enough to not be too HW specific

- Feature-wise very similar to OpenGL ES Shading Language

— Same shader types
— Supports similar built-in operations

— Also supports extensions for added features in the future

arm

17 © 2017 Arm Limited

SPIR-V Intermediate Language

Vulkan shaders are supplied directly in IR form

- Easier to parse than OpenGL ES Shaders, but still contains
many high-level operations

- Optimally code generation could be done directly on
SPIR-V IR, but not possible in practice

-~ No guarantee input is optimized for our HW

— Several operations cannot necessarily be natively
transformed into GPU HW instructions

- Then what are the benefits?

— Tools in the graphics ecosystem targeting SPIR-V can
be shared between different vendors.

18 © 2017 Arm Limited

%1 = OpLabel
%2 = OpLoad %11 %samp
%3 = OplLoad %v2f32type %out_texcoordO
%4 = OplmageSamplelmplicitLod %v4f32type %2 %3
%5 = OplLoad %v2f32type %out_texcoordO
%6 = OpVectorShuffle %v4f32type %5 %5001 1
%7 = OpFAdd %v4f32type %4 %6
OpStore %color %7
OpReturn
OpFunctionEnd

arm

OpenCL

General purpose compute on GPUs.

« APl + programming languages for general purpose compute on
GPUs

Programming languages are based on C99 and C++

Same API as on desktop, but different set of extensions

SPIR-V support

Coming up: Compute on Vulkan?

A common application on mobile devices is image filtering

19 © 2017 Arm Limited q r m

The OpenCL C++ Kernel Language

template <typename T, size_t Rows, size t Columns>

. class Matrix {
- New in OpenCL 2.1, C++14 subset

 No virtual functions (override), no function pointers b
unIess.compiIe-time constant expression, no template <typename T, size t Rows, size t Columns>
recursive calls Matrix<T, Rows, Columns> operator*(
) o] const Matrix<T, Rows, Columns>& Xx,
— Means everything can be inlined into every const Matrix<T, Rows, Columns>& y) {
entrypoint (kernel) ce
- Templates, lambda expressions and function }
overloading are available kernel void matrix_mult(float4 *A vec,
) _ float4 *B vec,
— Enables generic and meta programming float4 *Res) {

- Built-in vector data types similar to GLES stze_t ID = get_global_1d(0);

Matrix<float, 2, ,2> A
Matrix<float, 2, ,2> B

to_matrix(A_vec[ID]);
to_matrix(B_vec[ID]);

Res[ID] = to_vector(A * B);

20 © 2017 Arm Limited q r m

OpenCL Support in the Mali Compiler

- Leverages the Clang frontend
— Our colleague is Code Owner for OpenCL in Clang

- Mostly supported in Cambridge

21 © 2017 Arm Limited q r m

Handling Multiple APIs and Targets

- Handle several APIs using IR and middle end

OpenCL

T880

GLES

G71

SPIR-V

22 © 2017 Arm Limited

G51

-
OpenCL
. (Clang)

~

\

GLES

Middle end

Bifrost
Ex. G71

~

SPIR-V

Midgard
Ex. T880

arm

Day to- day Challenges
‘of a GPU Compller *
‘Engineer - *

© 2017 Arm Limited

arm

Implementing New Graphics Features

- New features are sometimes added, for example an update to the
API, new extensions or even completely new APIs.

- This requires analyzing and understanding the features, and to
create a plan on how the implementation should be done.

arm

24 © 2017 Arm Limited

Implementing New Graphics Features

- Typically new built-in constructs in the language
- New built-in variables or functions, texture formats etc.
« Correctness of course important, but also performance
— Are the new features optimized for the important use cases?

— What are these important use cases?

25 © 2017 Arm Limited

arm

Performance Work

- One of the biggest selling points, so quite
important part of our work

« Includes both analysis and implementation
work

- Implementation can be general compiler
improvements or more graphics specific
optimizations

26 © 2017 Arm Limited a r m

Performance Work cont.

- Performance on benchmarks and apps are typically
measured in FPS

« Content caninclude hundreds of shaders, understanding
which ones to focus on is important

- Understanding general flow and bottlenecks of content is
also important

; S ' ‘ ‘ GFXBench
27 © 2017 Arm Limited A | a r m

Supporting New Hardware

The APIs implemented in the driver
are the interfaces for applications!

The hardware can change a
lot!

28 © 2017 Arm Limited q r m

Supporting New Hardware

Common changes include:

Changes to the ISA (new instructions, slight changes to instruction, removed instructions)

— The ISA can change even between GPUs of the same architecture

A new hardware feature that the driver needs information from the compiler to utilize

A new architecture with an entirely new ISA

Collaboration with the hardware team

29 © 2017 Arm Limited q r m

Compilation Time

Since the compiler is running on user devices, reducing compilation time is important

- Normally would be running as a part of the driver, but profiling there is hard
— Usually use a stand alone compiler program for profiling
- The open source projects we're using don’t always fit our use-case
— Sometimes we need creative solutions for how to adapt them
- Otherwise optimize like any other program
— Profile using some tools to find problem areas
— Read the code, see if something can be improved a lot

— Implement and measure the result

30 © 2017 Arm Limited q r m

Working Downstream with Upstream Code

- Problem: OS projects we're using don’t always fit our needs
— Solution: Add downstream changes (not upstreamed)
- When updating to newer versions such changes can break...
— ...but we want the new features! downstream LOC
- Often when working with a problem we need to consider...
- ...maintainability
- ...performance
— ...compilation time

— ...upstream friendliness

time

31 © 2017 Arm Limited q r m

Opportunities fo
Students at Arm

© 2017 Arm Limited

arm

+ + + + + + + +

Opportunities

Internships
— Part time during a semester or full time during summer

Thesis

Graduate positions

Want to know more?

— 10 Octin the entrance of E-huset
- ARKAD
— Teknikfokus

— Email us: karl.hylen@arm.com, erik.hogeman@arm.com

33 © 2017 Arm Limited q r m

mailto:karl.hylen@arm.com
mailto:erik.hogeman@arm.com

34

Questions?

The Arm trademarks featured in this presentation are registered trademarks or
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights
reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2017 Arm Limited

