
© 2017 Arm Limited

GPU Compiler
Construction at

Arm

Karl Hylén, Compiler Engineer

Erik Hogeman, Compiler Engineer

© 2017 Arm Limited 2

Agenda

• About Arm and Mali

• Graphics APIs and Rasterization

• The Compiler

• Day-to-day Challenges of a GPU Compiler Engineer

• Opportunities for Students at Arm

• Wrap up and Questions

© 2017 Arm Limited

About Arm and Mali

© 2017 Arm Limited 4

What do we do, in Lund in Specific?

Lund

• Part of MPG – Media Processing Group

• Products:

– Mali GPUs

– Mali VPUs (Video Processing Units)

• SW engineering

– Including the compiler

– Also hardware modelling, video driver etc.

• HW engineering

– System design, RTL design and verification etc.

• Test development

– Both SW and HW

© 2017 Arm Limited 5

Arm’s Partnership Model

Arm’s partners shipped
nearly 15 billion chips with
ARM technology in 2015.

Over 86 billion chips
accumulated over 26 years

© 2017 Arm Limited 6

Arm Offices Worldwide

Europe
· Cambridge, UK - Global HQ
· Blackburn, UK
· Maidenhead, UK
· Sheffield, UK
· Oulu, Finland
· Grenoble, France

· Paris, France
· Sophia Antipolis, France
· Grasbrunn, Germany
· Sentjernej, Slovenia
· Lund, Sweden
· Trondheim, Norway

North America
· San Jose, CA USA
 (Main Regional Office)
· Irvine, CA USA
· San Diego, CA USA
· Boston, MA USA
· Austin, TX USA
· Plano - Keil, TX USA
· Olympia, WA USA
· Seattle, WA USA

Asia
· Shanghai, China

(Main Regional Office)
· Beijing, China
· Shenzhen, China
· Bangalore, India
· Noida, India
· Yokohama, Japan
· Seoul, S. Korea
· Taipei, Taiwan
· Hsinchu, Taiwan

© 2017 Arm Limited

Graphics APIs and
Rasterization

© 2017 Arm Limited 8

GPUs and Software

GPUs are built to support specific graphics (and compute) APIs

• Hardware is thus always licensed together with a software driver, implementing the
interface to the hardware through these APIs

• Example: OpenGL, DirectX, Vulkan, OpenCL

• The graphics API provides a set of C function calls that implements a technique called
rasterization

© 2017 Arm Limited 9

The Rasterization Pipeline

Vertex Stage Rasterizer Stage Fragment Stage

• 3D models to be rendered consist of vertices and primitives (triangles)

• Vertex stage: Transform the position of each vertex depending on the camera

• Rasterizer stage: Compute covered pixels from the resulting vertex positions

• Fragment stage: compute a color for each resulting fragment (pixel)

© 2017 Arm Limited 10

The Mali Shader Compiler

Mali Driver
Mali Shader

Compiler

The Mali Shader Compiler transforms ESSL source into binary
executables for the GPU

• Compiler is just one part of a larger driver

– Development requires cooperation with other software teams

– Compiler is shipped together with rest of driver on mobile phones and other
devices

© 2017 Arm Limited 11

Compiler Performance

• Competitors implement the same APIs, compete on performance

• The code is almost always hot

• If the compiler perfoms badly, it will reduce the frame rate

© 2017 Arm Limited

The Compiler

© 2017 Arm Limited 13

The Compiler Frontends

We implement several frontends with many different configurations

• OpenGL ES Shading Language

– Defines several shader types, versions and extensions on top of the core language

• SPIR-V (intermediate representation used in Vulkan)

– The newest graphics frontend, feature-wise similar to OpenGL ES Shading Language

• OpenCL/Vulkan Compute Kernels

– C/C++-style compute language

© 2017 Arm Limited 14

OpenGL ES Shading Language

Most widely used graphics programming language for mobile

Vertex Stage
Tessellation

Control

Tessellation

Evaluation
Tessellator

Geometry Stage Rasterizer Fragment Stage

Compute Stage

• Six shader stages

• Several extensions on top
of the core language

© 2017 Arm Limited 15

OpenGL ES Shading Language Features

Core language is similar to C, but with some differences

• Significantly simpler (no pointers or recursive function calls)

• Provides an in/out interface for each stage in the graphics pipeline

– In/out variables to communicate with other stages

– Read-only memory that is shared between threads

– Global memory that can be both read and written

• The language defines a large number of built-in functions

– Mathematical functions, such as 'cos' and 'normalize‘

– Texture lookups, to read color values from textures

– Atomic operations

• Available features can be configured through extensions

© 2017 Arm Limited 16

Shader Examples

#version 310 es

uniform mat4 mvp;
in vec4 position;
in vec2 texcoord_in;
out vec2 texcoord;

void main()
{

gl_Position = mvp * position;
texcoord = texcoord_in;

}

Vertex Shader

#version 310 es

precision mediump float;

uniform mediump sampler2D tex;
in vec2 texcoord;
out vec4 color;

void main()
{

color = texture(tex, texcoord);
}

Fragment Shader

Shader
interface

Main
function

Position
transform

Vertex
passthrough

Default
precision

Shader
interface

Texture
lookup and
color write.

© 2017 Arm Limited 17

Vulkan and SPIR-V

Vulkan is the newest graphics API, and provides a slightly different approach to
programmable pipeline stages

• Uses the “Standard Portable Intermediate Representation”, or SPIR-V, as shader language

• An intermediate representation is typically used in compilers to represent code closer to assembly
than the original source, but still high level enough to not be too HW specific

• Feature-wise very similar to OpenGL ES Shading Language

– Same shader types

– Supports similar built-in operations

– Also supports extensions for added features in the future

© 2017 Arm Limited 18

SPIR-V Intermediate Language

Vulkan shaders are supplied directly in IR form

• Easier to parse than OpenGL ES Shaders, but still contains
many high-level operations

• Optimally code generation could be done directly on
SPIR-V IR, but not possible in practice

– No guarantee input is optimized for our HW

– Several operations cannot necessarily be natively
transformed into GPU HW instructions

• Then what are the benefits?

– Tools in the graphics ecosystem targeting SPIR-V can
be shared between different vendors.

%1 = OpLabel

%2 = OpLoad %11 %samp

%3 = OpLoad %v2f32type %out_texcoord0

%4 = OpImageSampleImplicitLod %v4f32type %2 %3

%5 = OpLoad %v2f32type %out_texcoord0

%6 = OpVectorShuffle %v4f32type %5 %5 0 0 1 1

%7 = OpFAdd %v4f32type %4 %6

OpStore %color %7

OpReturn

OpFunctionEnd

© 2017 Arm Limited 19

OpenCL

General purpose compute on GPUs.

• API + programming languages for general purpose compute on
GPUs

• Programming languages are based on C99 and C++

• Same API as on desktop, but different set of extensions

• SPIR-V support

• Coming up: Compute on Vulkan?

• A common application on mobile devices is image filtering

© 2017 Arm Limited 20

The OpenCL C++ Kernel Language

• New in OpenCL 2.1, C++14 subset

• No virtual functions (override), no function pointers
unless compile-time constant expression, no
recursive calls

– Means everything can be inlined into every
entrypoint (kernel)

• Templates, lambda expressions and function
overloading are available

– Enables generic and meta programming

• Built-in vector data types similar to GLES

© 2017 Arm Limited 21

OpenCL Support in the Mali Compiler

• Leverages the Clang frontend

– Our colleague is Code Owner for OpenCL in Clang

• Mostly supported in Cambridge

© 2017 Arm Limited 22

Handling Multiple APIs and Targets

• Handle several APIs using IR and middle end

OpenCL

(Clang)

GLES

SPIR-V

Middle end

Bifrost

Ex. G71

Midgard

Ex. T880

OpenCL

GLES

SPIR-V

T880

G71

G51

© 2017 Arm Limited

Day-to-day Challenges
of a GPU Compiler
Engineer

© 2017 Arm Limited 24

Implementing New Graphics Features

• New features are sometimes added, for example an update to the
API, new extensions or even completely new APIs.

• This requires analyzing and understanding the features, and to
create a plan on how the implementation should be done.

© 2017 Arm Limited 25

Implementing New Graphics Features

• Typically new built-in constructs in the language

– New built-in variables or functions, texture formats etc.

• Correctness of course important, but also performance

– Are the new features optimized for the important use cases?

– What are these important use cases?

© 2017 Arm Limited 26

Performance Work

• One of the biggest selling points, so quite
important part of our work

• Includes both analysis and implementation
work

• Implementation can be general compiler
improvements or more graphics specific
optimizations

© 2017 Arm Limited 27

Performance Work cont.

• Performance on benchmarks and apps are typically
measured in FPS

• Content can include hundreds of shaders, understanding
which ones to focus on is important

• Understanding general flow and bottlenecks of content is
also important

© 2017 Arm Limited 28

Supporting New Hardware

The APIs implemented in the driver
are the interfaces for applications!

The hardware can change a
lot!

© 2017 Arm Limited 29

Supporting New Hardware

Common changes include:

• Changes to the ISA (new instructions, slight changes to instruction, removed instructions)

– The ISA can change even between GPUs of the same architecture

• A new hardware feature that the driver needs information from the compiler to utilize

• A new architecture with an entirely new ISA

• Collaboration with the hardware team

© 2017 Arm Limited 30

Compilation Time

Since the compiler is running on user devices, reducing compilation time is important

• Normally would be running as a part of the driver, but profiling there is hard

– Usually use a stand alone compiler program for profiling

• The open source projects we’re using don’t always fit our use-case

– Sometimes we need creative solutions for how to adapt them

• Otherwise optimize like any other program

– Profile using some tools to find problem areas

– Read the code, see if something can be improved a lot

– Implement and measure the result

© 2017 Arm Limited 31

Working Downstream with Upstream Code

• Problem: OS projects we’re using don’t always fit our needs

– Solution: Add downstream changes (not upstreamed)

• When updating to newer versions such changes can break…

– …but we want the new features!

• Often when working with a problem we need to consider…

– …maintainability

– …performance

– …compilation time

– …upstream friendliness

time

downstream LOC

© 2017 Arm Limited

Opportunities for
Students at Arm

© 2017 Arm Limited 33

Opportunities

• Internships

– Part time during a semester or full time during summer

• Thesis

• Graduate positions

• Want to know more?

– 10 Oct in the entrance of E-huset

– ARKAD

– Teknikfokus

– Email us: karl.hylen@arm.com, erik.hogeman@arm.com

mailto:karl.hylen@arm.com
mailto:erik.hogeman@arm.com

3434 © 2017 Arm Limited

The Arm trademarks featured in this presentation are registered trademarks or
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights
reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

Questions?

