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Runtime systems
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Organization of data
• Global/static data
• Activation frames (method instances)
• Objects (class instances)

Method calls
• Call	and	return
• Parameter	transmission

Access	to variables
• Local variables
• Non-local variables

Object-oriented constructs
• Inheritance
• Overriding
• Dynamic dispatch
• Garbage collection



The	machine
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Registers:	32	or	64	bits	wide

r0

r1

...

r31

Typically a	small	number.
For	example,	32	registers

(Random Access)	Memory:	Typically byte	adressed

0

4

8

12

16

...

232

Like	a	very big array.
With	32	bit	addressing,	max	4	GB.
With	64	bit	addressing,	theoretically	264
(absurd	amount	in	practice).

Some have dedicated roles:
program	counter,	stack	pointer,	...

Some are general	purpose,	for	
computations

Typically divided into different	segments:
global	data,	code,	stack,	heap.



Example memory segments
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Stack	of activation frames
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The data for each
method call is stored in 
an activation frame

Synonyms:
activation record
activation
stack frame
frame

Swedish:
aktiveringspost

frame

frame

frame

code

stack 
grows

Some dedicated registers:

FP – Frame Pointer. The first word of the current frame

SP – Stack Pointer. The top of the stack.

PC – Program counter. The currently executing instruction.



Example frame layout
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The	calling method pushes arguments	on	the	stack.
The	return value is	placed in	a	register.

temps:	Temporary variables

args:	Arguments	to current frame.

retaddr:	Saved PC	- where to jump at	return

dynlink:	Dynamic link – points to frame of calling method

locals:	Local variables

FP

SP

retaddr
arg1
arg2
temp1
local3
local2
local1
dynlink

temp3
temp2
temp1
local2
local1
dynlink

calling frame

current frame



Frame pointer
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void p(int a, int b) {
int x = 1;
int y = 2;
int z = 3;
...

}

Used for	accessing arguments	and	variables in	the	frame

FP

SP

retaddr
a
b
...

z
y
x

dynlink

p frame

calling frame



Stack	pointer
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void p(int a, int b) {
int x = 1;
int y = 2;
int z = 3;
q(4711);

}

Used for	growing the	stack,	e.g.,	at	a	method call

The	argument	4711	is	pushed
on	the	stack	before calling q

FP

SP

retaddr
a
b
...

4711
z
y
x

dynlink

p frame



Dynamic link
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void p1() {
int x = 1;
int y = 2;
p2();

}

void p2() {
int z = 3;
p3();

}

void p3(){
int v = 4;

}

Points	to the	frame of the	calling method

Used for	restoring FP	when returning from	a	call.

FP
SP

retaddr
z=3

dynlink

v=4
dynlink

p1

retaddr
y=2
x=1

dynlink

p2

p3



Recursion
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int f(int x) {
bool ready = x <= 1;
if (ready)
return 1;

else
return x * f(x-1);

}

void main() {
...
f(3);
...

}

Several activations of the	same	method

FP
SP

retaddr
1

ready=F
dynlink

ready=T
dynlink

f

retaddr
2

ready=F
dynlink

f

f

retaddr
3
...

main



Nested methods
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void p1() {
int x = 1;
int y = 2;

void p2() {
int z = y+1;
p3();

}

void p3(){
int t = x+3;

}

p2(); y++;
}

The	methods are nested.
Supported in	Algol,	Pascal,	Python,	

but not	in	C,	Java...

Static link – a	hidden argument	that points to the	frame of the	enclosing method.
Makes	it	possible to access	variables in	enclosing methods.

FP
SP t

dynlink

p2

retaddr
statlink

z
dynlink

p3

retaddr
statlink

y
x

dynlink
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Objects and	methods

13

class A {
int x = 1;
int y = 2;

void ma() {
x = 3;

}
}

class B {
void mb() {
A a = ...;
a.ma();

}
}

void main() {
new B().mb();

}

This pointer	– a	hidden argument.	Corresponds to the	static link.
Makes	it	possible to access	fields in	the	object.

retaddr
this
a

dynlink

FPSP,

retaddr
this
temp
dynlink

madynlink

mb header

header
x
y

A

B

Stack Heap

main



Access	to local variable
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void p() {
int x = 1;
int y = 2;
y++;
...

}

Assume each word is	8	bytes.

The	compiler computes addresses relative	to FP:

var  offset  address
x      1     FP-1*8
y      2     FP-2*8

Typical assembly code for	y++
SUB   FP  16  R1     // Compute address of y, place in R1
LOAD  R1  R2         // load value of y into R2
INC   R2             // increment R2
STORE R2  R1         // store new value into y

FP

SP
p

y
x

dynlink

lower	addresses



Computing offsets	for	variables
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void p() {
boolean f1 = true;
int x = 1;
boolean f2 = false;
if (...) {
int y = 2;
...

}
else {
int z = 3; 
...

}
...

}

The	compiler can reorder variables in	the	
activation to make	efficient use of the	space.

y	and	z	have disjoint	lifetimes.
They could share the	same	memory cell.

The	booleans could be	stored in	consecutive
bytes,	or	bits.

...



Access	to non-local variable
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void p1() {
int x = 1;
int y = 2;
void p2() {
x++;

}
p2();

}

Follow the	static link once to get	to the	enclosing frame
ADD   FP  16  R1  // Compute address of statlink
LOAD  R1  R2      // Get address to p1's frame

SUB   R2  8   R3  // Compute the address of x
LOAD  R3  R4      // Load y into R4
INC   R4          // Increment
STORE R4  R3      // Store the new value to memory

For	deeper nesting,	follow multiple static links.

The	compiler knows that x	is	available in	an	instance of p1	
(the	enclosing block).

SP, FP p2dynlink

retaddr
statlink

y
x

dynlink

p1



Method call

17

void p1() {
int x, y, z;
...
z = p2(x+1, y*2);
...

}

int p2(int a, int b) {
...
...
...
return ...
...

}

1

2

3

4
5

1. Transfer	arguments	and	call:
Push	the	arguments.	Push	the	return address.	Jump to the	called method.

2. Allocate new	frame:
Push	FP	and	move FP.
Move SP	to make	space	for	local variables.

3. Run the	code for	p2.

4. Save	the	return value in	a	register.
Deallocate the	frame:	Move SP	back. Move FP	back. Pop	FP.
Pop	return address and	jump to it.

5. Pop	arguments.	Continue executing in	p1.



Step	1:	Transfer	arguments	and	call.
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Transfer	arguments:
• Push	the	arguments	on	the	stack

Do	the	call:
• Compute the	return address (e.g.,	PC+2*8)	and	push	it	on	the	stack.
• Jump to the	code for	p2.

(Usually an	instruction "CALL	p2"	accomplishes these two things.)

FP

SP z
y
x

dynlink

p1

FP

SP retaddr
a
b
z
y
x

dynlink

p1



Step	2:	Allocate the	new	frame
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move SP	to allocate
space	for	new	locals

FP
SP

retaddr
a
b
z
y
x

dynlink

...
dynlinkp2

FP

SP
retaddr

a
b
z
y
x

dynlink

p1

dynlink

push	the	dynamic
link (current FP)

SP, FP
retaddr

a
b
z
y
x

dynlink

dynlink

set	FP	to the	new	
frame



Step	3:	Run the	code for	p2
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run the	code for	p2	

FP
SP

retaddr
a
b
z
y
x

dynlink
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...
dynlink

p2



Step	4:	Deallocate and	return
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Pop	FP	and	set	FP	to
old	value (dynlink)

FP

SP retaddr
a
b
z
y
x

dynlink

p1

FP
SP

retaddr
a
b
z
y
x

dynlink

p1

...
dynlink

p2

Store	the	return value
in	a	register.

SP, FP
retaddr

a
b
z
y
x

dynlink

p1

dynlink p2

Deallocate locals:
Move SP	back	to FP.

Then pop	the	return address and	jump to it.	
(Usually an	instruction "RET"	does this.)



Step	5:	Continue executing in	p1
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• Pop	the	arguments
• Continue executing in	p1

FP

SP a
b
z
y
x
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p1

FP

SP z
y
x

dynlink
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What the	compiler needs to compute
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For	uses of locals and	arguments
• The	offsets	to use (relative	to the	Frame Pointer)

For	methods
• The	space	needed for	local declarations and	temporaries.

(Or	use push/pop	for	allocation/deallocation.)

If	nested methods are supported
• The	number of static levels to use for	variable accesses (0	for	local vars)
• The	number of static levels to use for	method calls	(0	for	local methods)



Registers	typically used for	optimization
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Store	data	in	registers	instead of in	the	frame:
• The	return value
• The	n first arguments
• The	static link
• The	return address

If	a	new	call	is	made,	these registers	must	not	be	corrupted!

Calling	conventions:
Conventions	for	how arguments	are passed,	e.g.,	in	specific registers	or	in	the	
activation record.
Conventions	for	which registers	must	be	saved (as	temps)	by	caller or	callee:

Caller-save	register:	The	caller must	save	the	register	before calling.

Callee-save	register:	The	called method must	save	these registers	before using
them,	and	restoring them before return.



Many different	variants	on	activation frames
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Stack	pointer:	Point	to first empty word,	or	last	used word?
Arguments:	Treat them as	part	of the	calling or	called frame?
Argument	order:	Forwards	or	backwards order	in	the	frame?
Direction:	Let the	stack	grow towards larger or	smaller addresses?
Allocate space	for	vars	and	temps:	In	one chunk,	or	push	one var	at	a	time.
...

Machine architectures often have instructions supporting a	specific activation
record	design.	E.g.,	dedicated FP	and	SP	registers,	and	CALL,	RETURN	instructions
that manipulate them.



Summary questions

26

• What is	the	difference between registers	and	memory?
• What typical segments	of memory are used?
• What is	an	activation frame?
• Why are activation frames put on	a	stack?
• What are FP,	SP,	and	PC?
• What is	the	static link?	Is	it	always needed?
• What is	the	dynamic link?
• What is	meant by	the	return address?
• How can local variables be	accessed?
• How can non-local variables be	accessed?
• How does the	compiler compute offsets	for	variables?
• What happens at	a	method call?
• What information	does the	compiler need to compute in	order	to generate
code for	accessing variables?	For	a	method call?

• What is	meant by	”calling conventions”?


