
EDAN65:	Compilers,	Lecture 10

Runtime systems
Görel	Hedin
Revised:	2017-09-25

This lecture

Semantic analyzer

Intermediate
code generator

Optimizer

Target	code
generator

2

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions

Context-free
grammar

Attribute
grammar

machine

runtime system

stack

heap

code
and
data

objects

activation
records

Interpreter

target code

tokens

Attributed AST

intermediate code

source	code (text)

AST	(Abstract	syntax	tree)

intermediate code

garbage
collection

Virtual
machine

Runtime systems

3

Organization of data
• Global/static data
• Activation frames (method instances)
• Objects (class instances)

Method calls
• Call	and	return
• Parameter	transmission

Access	to variables
• Local variables
• Non-local variables

Object-oriented constructs
• Inheritance
• Overriding
• Dynamic dispatch
• Garbage collection

The	machine

4

Registers:	32	or	64	bits	wide

r0

r1

...

r31

Typically a	small	number.
For	example,	32	registers

(Random Access)	Memory:	Typically byte	adressed

0

4

8

12

16

...

232

Like	a	very big array.
With	32	bit	addressing,	max	4	GB.
With	64	bit	addressing,	theoretically	264
(absurd	amount	in	practice).

Some have dedicated roles:
program	counter,	stack	pointer,	...

Some are general	purpose,	for	
computations

Typically divided into different	segments:
global	data,	code,	stack,	heap.

Example memory segments

5

stack

heap

code (read only)

objects

activation
frames

global data

Stack	of activation frames

6

The data for each
method call is stored in
an activation frame

Synonyms:
activation record
activation
stack frame
frame

Swedish:
aktiveringspost

frame

frame

frame

code

stack
grows

Some dedicated registers:

FP – Frame Pointer. The first word of the current frame

SP – Stack Pointer. The top of the stack.

PC – Program counter. The currently executing instruction.

Example frame layout

7

The	calling method pushes arguments	on	the	stack.
The	return value is	placed in	a	register.

temps:	Temporary variables

args:	Arguments	to current frame.

retaddr:	Saved PC	- where to jump at	return

dynlink:	Dynamic link – points to frame of calling method

locals:	Local variables

FP

SP

retaddr
arg1
arg2
temp1
local3
local2
local1
dynlink

temp3
temp2
temp1
local2
local1
dynlink

calling frame

current frame

Frame pointer

8

void p(int a, int b) {
int x = 1;
int y = 2;
int z = 3;
...

}

Used for	accessing arguments	and	variables in	the	frame

FP

SP

retaddr
a
b
...

z
y
x

dynlink

p frame

calling frame

Stack	pointer

9

void p(int a, int b) {
int x = 1;
int y = 2;
int z = 3;
q(4711);

}

Used for	growing the	stack,	e.g.,	at	a	method call

The	argument	4711	is	pushed
on	the	stack	before calling q

FP

SP

retaddr
a
b
...

4711
z
y
x

dynlink

p frame

Dynamic link

10

void p1() {
int x = 1;
int y = 2;
p2();

}

void p2() {
int z = 3;
p3();

}

void p3(){
int v = 4;

}

Points	to the	frame of the	calling method

Used for	restoring FP	when returning from	a	call.

FP
SP

retaddr
z=3

dynlink

v=4
dynlink

p1

retaddr
y=2
x=1

dynlink

p2

p3

Recursion

11

int f(int x) {
bool ready = x <= 1;
if (ready)
return 1;

else
return x * f(x-1);

}

void main() {
...
f(3);
...

}

Several activations of the	same	method

FP
SP

retaddr
1

ready=F
dynlink

ready=T
dynlink

f

retaddr
2

ready=F
dynlink

f

f

retaddr
3
...

main

Nested methods

12

void p1() {
int x = 1;
int y = 2;

void p2() {
int z = y+1;
p3();

}

void p3(){
int t = x+3;

}

p2(); y++;
}

The	methods are nested.
Supported in	Algol,	Pascal,	Python,	

but not	in	C,	Java...

Static link – a	hidden argument	that points to the	frame of the	enclosing method.
Makes	it	possible to access	variables in	enclosing methods.

FP
SP t

dynlink

p2

retaddr
statlink

z
dynlink

p3

retaddr
statlink

y
x

dynlink

p1

Objects and	methods

13

class A {
int x = 1;
int y = 2;

void ma() {
x = 3;

}
}

class B {
void mb() {
A a = ...;
a.ma();

}
}

void main() {
new B().mb();

}

This pointer	– a	hidden argument.	Corresponds to the	static link.
Makes	it	possible to access	fields in	the	object.

retaddr
this
a

dynlink

FPSP,

retaddr
this
temp
dynlink

madynlink

mb header

header
x
y

A

B

Stack Heap

main

Access	to local variable

14

void p() {
int x = 1;
int y = 2;
y++;
...

}

Assume each word is	8	bytes.

The	compiler computes addresses relative	to FP:

var offset address
x 1 FP-1*8
y 2 FP-2*8

Typical assembly code for	y++
SUB FP 16 R1 // Compute address of y, place in R1
LOAD R1 R2 // load value of y into R2
INC R2 // increment R2
STORE R2 R1 // store new value into y

FP

SP
p

y
x

dynlink

lower	addresses

Computing offsets	for	variables

15

void p() {
boolean f1 = true;
int x = 1;
boolean f2 = false;
if (...) {
int y = 2;
...

}
else {
int z = 3;
...

}
...

}

The	compiler can reorder variables in	the	
activation to make	efficient use of the	space.

y	and	z	have disjoint	lifetimes.
They could share the	same	memory cell.

The	booleans could be	stored in	consecutive
bytes,	or	bits.

...

Access	to non-local variable

16

void p1() {
int x = 1;
int y = 2;
void p2() {
x++;

}
p2();

}

Follow the	static link once to get	to the	enclosing frame
ADD FP 16 R1 // Compute address of statlink
LOAD R1 R2 // Get address to p1's frame

SUB R2 8 R3 // Compute the address of x
LOAD R3 R4 // Load y into R4
INC R4 // Increment
STORE R4 R3 // Store the new value to memory

For	deeper nesting,	follow multiple static links.

The	compiler knows that x	is	available in	an	instance of p1	
(the	enclosing block).

SP, FP p2dynlink

retaddr
statlink

y
x

dynlink

p1

Method call

17

void p1() {
int x, y, z;
...
z = p2(x+1, y*2);
...

}

int p2(int a, int b) {
...
...
...
return ...
...

}

1

2

3

4
5

1. Transfer	arguments	and	call:
Push	the	arguments.	Push	the	return address.	Jump to the	called method.

2. Allocate new	frame:
Push	FP	and	move FP.
Move SP	to make	space	for	local variables.

3. Run the	code for	p2.

4. Save	the	return value in	a	register.
Deallocate the	frame:	Move SP	back. Move FP	back. Pop	FP.
Pop	return address and	jump to it.

5. Pop	arguments.	Continue executing in	p1.

Step	1:	Transfer	arguments	and	call.

18

Transfer	arguments:
• Push	the	arguments	on	the	stack

Do	the	call:
• Compute the	return address (e.g.,	PC+2*8)	and	push	it	on	the	stack.
• Jump to the	code for	p2.

(Usually an	instruction "CALL	p2"	accomplishes these two things.)

FP

SP z
y
x

dynlink

p1

FP

SP retaddr
a
b
z
y
x

dynlink

p1

Step	2:	Allocate the	new	frame

19

move SP	to allocate
space	for	new	locals

FP
SP

retaddr
a
b
z
y
x

dynlink

...
dynlinkp2

FP

SP
retaddr

a
b
z
y
x

dynlink

p1

dynlink

push	the	dynamic
link (current FP)

SP, FP
retaddr

a
b
z
y
x

dynlink

dynlink

set	FP	to the	new	
frame

Step	3:	Run the	code for	p2

20

run the	code for	p2	

FP
SP

retaddr
a
b
z
y
x

dynlink

p1

...
dynlink

p2

Step	4:	Deallocate and	return

21

Pop	FP	and	set	FP	to
old	value (dynlink)

FP

SP retaddr
a
b
z
y
x

dynlink

p1

FP
SP

retaddr
a
b
z
y
x

dynlink

p1

...
dynlink

p2

Store	the	return value
in	a	register.

SP, FP
retaddr

a
b
z
y
x

dynlink

p1

dynlink p2

Deallocate locals:
Move SP	back	to FP.

Then pop	the	return address and	jump to it.	
(Usually an	instruction "RET"	does this.)

Step	5:	Continue executing in	p1

22

• Pop	the	arguments
• Continue executing in	p1

FP

SP a
b
z
y
x

dynlink

p1

FP

SP z
y
x

dynlink

p1

What the	compiler needs to compute

23

For	uses of locals and	arguments
• The	offsets	to use (relative	to the	Frame Pointer)

For	methods
• The	space	needed for	local declarations and	temporaries.

(Or	use push/pop	for	allocation/deallocation.)

If	nested methods are supported
• The	number of static levels to use for	variable accesses (0	for	local vars)
• The	number of static levels to use for	method calls	(0	for	local methods)

Registers	typically used for	optimization

24

Store	data	in	registers	instead of in	the	frame:
• The	return value
• The	n first arguments
• The	static link
• The	return address

If	a	new	call	is	made,	these registers	must	not	be	corrupted!

Calling	conventions:
Conventions	for	how arguments	are passed,	e.g.,	in	specific registers	or	in	the	
activation record.
Conventions	for	which registers	must	be	saved (as	temps)	by	caller or	callee:

Caller-save	register:	The	caller must	save	the	register	before calling.

Callee-save	register:	The	called method must	save	these registers	before using
them,	and	restoring them before return.

Many different	variants	on	activation frames

25

Stack	pointer:	Point	to first empty word,	or	last	used word?
Arguments:	Treat them as	part	of the	calling or	called frame?
Argument	order:	Forwards	or	backwards order	in	the	frame?
Direction:	Let the	stack	grow towards larger or	smaller addresses?
Allocate space	for	vars	and	temps:	In	one chunk,	or	push	one var	at	a	time.
...

Machine architectures often have instructions supporting a	specific activation
record	design.	E.g.,	dedicated FP	and	SP	registers,	and	CALL,	RETURN	instructions
that manipulate them.

Summary questions

26

• What is	the	difference between registers	and	memory?
• What typical segments	of memory are used?
• What is	an	activation frame?
• Why are activation frames put on	a	stack?
• What are FP,	SP,	and	PC?
• What is	the	static link?	Is	it	always needed?
• What is	the	dynamic link?
• What is	meant by	the	return address?
• How can local variables be	accessed?
• How can non-local variables be	accessed?
• How does the	compiler compute offsets	for	variables?
• What happens at	a	method call?
• What information	does the	compiler need to compute in	order	to generate
code for	accessing variables?	For	a	method call?

• What is	meant by	”calling conventions”?

