
ExtendJ
Extensible Java Compiler

Jesper Öqvist
PhD Student

Lund University, Sweden

What is ExtendJ?
Extensible Java compiler.

Java 4-6 by Torbjörn Ekman
Java 7 by Jesper Öqvist (Master’s Thesis)
Java 8 by Erik Hogeman (Master’s Thesis)

Current maintainer: Jesper Öqvist (me)

Open Source: Modified BSD License

extendj.org

Goals
ExtendJ should be easy to extend with

- Analyses
- New language constructs
- Metrics

Used for
research,
PL experiments based on Java,
compiler course projects.

extendj.org

String Equality Check
Student Project
Bug pattern detection:

String food;

if (food == “beer”) { …

Ella Eriksson & Zimon Kuhs

String Equality Check
Student Project
Bug pattern detection:

String food;

if (food == “beer”) { …

=> Suggestion: replace == with .equals()

Ella Eriksson & Zimon Kuhs

String Equality Check
Implementation (JastAdd code):

EQExpr contributes "Suggestion: ..."

when badStringEq()

to Program.errors();

syn boolean EQExpr.badStringEq() =

getLeft().type().isString() &&

getRight().type().isString();

Ella Eriksson & Zimon Kuhs

Implementation (JastAdd code):

EQExpr contributes "Suggestion: ..."

when badStringEq()

to Program.errors();

syn boolean EQExpr.badStringEq() =

getLeft().type().isString() &&

getRight().type().isString();

String Equality Check

food == “beer”

Ella Eriksson & Zimon Kuhs

Spread Operator
Student Project
Type analysis for the Spread Operator (*.)

 List<Person> people;

 List<String> names = people*.name;

(Working but not complete implementation)

Hans Bjerndell & Linus Lexfors

Multiplicities Extension
Developed in collaboration with prof. Friedrich Steimann:

@any Person people;

people += alice; // += → .add()

people += bob;

people.work(); // Call .work() on alice and bob.

Jesper Öqvist

Demo

Demo: multiplicities.

extendj.org

ExtendJ Internals
How does ExtendJ work?

- Let’s look at the internals...

Compiler Internals

Compiler

Executable
Source
Code

Errors!

INPUT OUTPUT

Compiler Internals

Compiler

Executable
Source
Code

Abstract
Syntax Tree

Errors!

Transform
AnalyzeParse

Compiler Passes?
Conventional compilers are structured around passes.

One or multiple passes.

Compiler Passes?
Conventional compilers are structured around passes.

One or multiple passes.

One pass: all translation done while parsing.

Not all languages can be compiled in a single pass!

(C is a one-pass language. That’s why declaration order matters!)

Single Pass

Storage limitations on the B compiler demanded a
one-pass technique in which output was generated as
soon as possible, and the syntactic redesign that made
this possible was carried forward into C.

- Dennis M. Ritchie, The Development of the C Language

(The B compiler ran on PDP-7 with 8K of 18-bit words!)

DEC PDP-7

© User:Toresbe / Wikimedia Commons /
CC-BY-SA-1.0

https://en.wikipedia.org/wiki/User:Toresbe
http://commons.wikimedia.org/
http://creativecommons.org/licenses/by-sa/1.0/

Compiler Passes?
Conventional compilers are structured around passes.

One pass: all translation done while parsing.

Multiple passes improve modularity.

Machine-dependent output in separate pass, easy to swap target machine.

Compilation Passes Attribute Equations

Pass-Oriented Attribute-Oriented

P1 P2 P3

Data

type = x.decl.type

decl = ...

vs.

Compilation Passes Attribute Equations

P1 P2 P3

Data

type = x.decl.type

decl = ...

vs.

errors = ... Errors!

bytecode = ... Java
Classfiles

Pass-Oriented Attribute-Oriented

No Passes?
Using attributes:

● Compilation is divided into small computations (attributes).
● Attributes are declarative

Say what should be computed, not how to do it.
● Attributes have no side-effects. Order independent!
● Attribute evaluator schedules attributes:

○ Lazy evaluation.
○ Automatic parallelization.

Lazy Evaluation
If an attribute (instance) is not needed, it will not be computed.

Avoids redundant computation for unused features.

Automatic Parallelization
Attributes are observationally pure:

● No side effects.
● Not order-dependent.

Thus, attributes can be parallelized.

Speedup depends on attribute structure.

For ExtendJ, speedup of 2x is possible.

Attribute-Oriented Compiler
How to make a full compiler with attributes?

1. Split computations into meaningful attributes.
2. What should be synthesized/inherited?
3. What should be implicitly generated with higher-order attributes?

ExtendJ Design
Specification divided into modules based on Java version.

All types are represented in AST (user-defined and primitives)

Generic types are represented with higher-order attributes.

Type and name lookup is demand-driven (no precomputation of symbol tables).

Minimal use of AST transforms (rewrites). Instead, try to use higher-order attrs.

Type inference is least obvious part.

ExtendJ Challenges
Java is a very complicated language.

Type inference

ExtendJ Challenges
Java is a very complicated language.

The official compliance test suite is proprietary, so we use our own regression
tests and regular testing on Open Source projects to find errors.

ExtendJ is not perfectly compliant, but close enough for our needs.

Attributes have a performance cost. ExtendJ is a few times slower than javac.

ExtendJ Overview: AST
Everything is a declaration or an access:

● TypeDecl
● MethodDecl
● VarAccess
● MethodAccess
● TypeAccess

ExtendJ Overview: AST
Program ::= CompilationUnit*;

CompilationUnit ::= TypeDecl*;

abstract TypeDecl ::= BodyDecl*;
ClassDecl : TypeDecl;
InterfaceDecl : TypeDecl;

abstract Stmt;
abstract Expr;
Access : Expr;

Member methods/fields

Source files

Named type/member use

Statements (if/for/…)

ExtendJ Overview
● Name analysis

○ Classification, lookup

● Type analysis
○ Lookup, subtyping, generics

● Definite assignment
● Normalization

○ Multiple declaration, enhanced for, try-with-resources, lambda

● Implicit code gen
○ Accessors, bridge methods

● Bytecode output

Name analysis: classification
Parsed names must be resolved based on context:

a.b.c();

Dot

MethodAccess

ParseName

Dot

ParseName

ID=”b”

ID=”a” ???

???

Name analysis: classification
Parsed names must be resolved based on context:

a.b.c();

Dot

MethodAccess

VarAccess

Dot

FieldAccess

ID=”b”

ID=”a”

Dot

MethodAccess

ParseName

Dot

ParseName

ID=”b”

ID=”a”

Rewrite

Name analysis: classification
Parsed names must be resolved based on context:

a.b.c();

Parse name rewrite is done using higher-order attributes!

Name analysis: lookup
Inherited attributes for name lookups:

lookupVariable(String name)
lookupMethod(String name)
lookupConstructor(String name)

VarAccess
lookupVariable

VarDecl

Type analysis
Type lookup works like name lookup:

lookupType(String pkg, String type)

TypeAccess
lookupType

TypeDecl

Type Analysis: Subtyping
Double dispatch:

syn boolean TypeDecl.subtype(TypeDecl other);
eq ClassDecl.subtype(TypeDecl other) = other.subtypeClassDecl(this);

syn boolean TypeDecl.subtypeClassDecl(ClassDecl other) = false;
eq ClassDecl.subtypeClassDecl(ClassDecl other) = …;

Type Analysis: Implicits
Higher-order attributes for implicit types

(primitives, parameterized types)

class Foo<T> {}
Foo<Integer> intfoo; // Need type instance!

TypeDecl
lookupParType

ParTypeDecl

intfoo

Type Analysis: Implicits
Higher-order attributes for implicit types

(primitives, parameterized types)

nta ParTypeDecl
TypeDecl.lookupParType(ParTypeAccess) {}

ParClassDecl : ClassDecl ::=
Parameterization;

TypeDecl
lookupParType

ParTypeDecl

intfoo

Extensibility
Extensibility is easy with JastAdd:

● Fine-grained control with Aspect Oriented Programming and Attributes.
● Extensions can change everything!

However, this leads to fragile extensions:

● Everything is exposed for extension
=> can not change internals without affecting existing extensions!

Open problem: ExtendJ needs to be refactored to improve, but this hurts existing
users.

Parallelizing ExtendJ
I have been working on parallelizing ExtendJ.

Currently, it’s about twice as fast as the sequential version.

Parallelization is done using our recent developments supporting concurrent
attribute evaluation.

The concurrent evaluation research was supported by a 2015 Google Faculty
Research Award.

Demo

<Demo>: Parallel execution.

extendj.org

Building Extensions
I developed a Gradle plugin to easily build extensions with ExtendJ!

Gradle plugin: JastAddGradle

The extension is specified in a module specification, which is used to compile
together with some base modules from ExtendJ.

Building Extensions
ExtendJ Modules

java4
backend

java4
frontend

java5
backend

java5
frontend

java8
backend

java8
frontend

Extension Module

Your
Extension

Module dependency

... ...

Extensions: Getting Started
A small template project to get started with building an extension:

Extension Base Project: https://bitbucket.org/extendj/extension-base

https://bitbucket.org/extendj/extension-base

Demo

<Demo>: Extension Base (StringEq).

extendj.org

Thank You

Thanks for listening!

Learn more at:
extendj.org and jastadd.org

Jesper Öqvist

Read my blog https://llbit.se
Upvote my instagram extendj.org

