EDANG65: Compilers, Lecture 9A
Static analysis

Gorel Hedin
Revised: 2017-09-25

Program analysis

compute program properties

to transform code

to optimize code

to find bugs

to support interactive tooling
to measure quality

Static Dynamic
on the source code on a running program

or on compiled code

typically extends name and type
analysis done in the compiler

a conservative approximation of
all possible program runs

Modular addition of static analyses in JastAdd

Abstract grammar

* ast

* jrag

-~

-~

Name and type analysis

* jrag

/7

More static analyses

* java

JastAdd —) L

Generated
AST classes

Example static analyses

name-analysis.jrag

type-analysis.jrag

control-flow.jrag

data-flow.jrag

call-graph.jrag

metrics.jrag

....jrag

What statements can be reached from a given point?
Are there statements that are unreachable in a method?

What statements affect the value of a given variable at a
given point?
Are there statements that are unnecessary in the method?

What methods are called by a given method?
Are there methods that are never called?

Compute some useful metrics of a method,
class or program.

Modular language extension in JastAdd

Base language

Abstract grammar

* ast

|
) JastAdd —) L * java
* jrag Generated
AST classes
Name and type analysis I
*.ast *.jrag * jrag

New language Name and type analysis

construct

for new construct

New analysis relevant
for new construct

Language extension

Think declaratively!

What do you want to compute?

What properties would allow you to easily compute that? Declare as attributes.
Make an attribute syntheised if it depends on information in the node.

Inherited if it only depends on context.

When defining an attribute, make up new properties/attributes that would make it
easy to compute.

Don't think about the order of computation.

The compiler main program becomes
very simple:

// Sketch:
public class Compiler {
public static void main(String[] args) {
Program program = new Parser().parse(new Scanner());
if (program.errors().isEmpty()) {
printCode(program.code());
}
else {
printErrors(program.errors());

}
}
}

All attributes (e.g., code and errors) are automatically available as soon
as the AST (program) has been constructed by the parser.
Calling an attribute causes it to be evaluated (on-demand evaluation).

Review of JastAdd mechanisms

Synthesized
Inherited
Broadcasting
Reference
Parameterized
NTA
Collection
Circular

Synthesized attribute

syn x

Define in the node itself. Use in parent.

Inherited attribute attribute

eqA.getBx=..| A

Use in the node itself. Define in a parent.

10

Broadcasting

eqA.getBx=..| A

The definition does not have to be in the immediate parent.

11

Reference attributes

eq B.aC=...
eq...=..aCx...

aC

An attribute can be a reference to another node.
Attributes of that node can be accessed.

12

Parameterized attributes

eq B.p(Cc) =...

p(cl)=...
p(c2)=...
p(c3)=...
p(null)= ...

An attribute can have parameters.
There is one attribute instance for each possible parameter combination.

13

Nonterminal attributes (NTAs)

ntaCA.n=... A

An attribute can be a new fresh subtree.

14

Parameterized nonterminal attribute

nta C A.n(String s) = ... A

n("a") n("b") n("c")

5
D
o](F
o J[E

An NTA can be parameterized.

Collection attributes

coll Set A.c() [new HashSet()] with add

B contributes x ...

E contributes y ...

A collection is a combination of contributions.

16

Circular attributes

B B
next next
c={..} c={..}
syn Set B.c() circular [new HashSet()] = ... next().c() ...;

A circular attribute depends (transitively) on itself.
The evaluation algorithm uses fixed point iteration.

17

