
EDAN65:	Compilers,	Lecture 9A

Static analysis
Görel	Hedin
Revised:	2017-09-25

Program	analysis

2

Static Dynamic
on	the	source	code
or	on	compiled code

typically extends name and	type
analysis done in	the	compiler

on	a	running program

compute program	properties

to transform	code
to optimize code
to find bugs
to support	interactive tooling
to measure quality
...

a	conservative approximation	of
all	possible program	runs

Modular addition	of static analyses in	JastAdd

3

*.ast

JastAdd

*.jrag

*.ast
*.ast

*.ast
*.java

Abstract	grammar

Name and	type analysis

Generated
AST	classes

*.ast
*.jrag

More static analyses

Example static analyses

4

name-analysis.jrag

type-analysis.jrag

control-flow.jrag
What statements can be	reached from	a	given	point?
Are there statements that are unreachable in	a	method?

data-flow.jrag
What statements affect the	value of a	given	variable at	a	
given	point?
Are there statements that are unnecessary in	the	method?

call-graph.jrag
What methods are called by	a	given	method?
Are there methods that are never	called?

....jrag

metrics.jrag
Compute some useful metrics of a	method,	
class or	program.

Modular language extension	in	JastAdd

5

*.ast

JastAdd

*.jrag

*.ast
*.ast

*.ast
*.java

Abstract	grammar

Name and	type analysis

Generated
AST	classes

Base language

*.jrag *.jrag

Name and	type analysis
for	new	construct

*.ast

New	language
construct

New	analysis relevant	
for	new	construct

Language extension

Think	declaratively!

6

• What do	you want to compute?
• What properties would allow you to easily compute that?	Declare as	attributes.
• Make	an	attribute syntheised if it	depends on	information	in	the	node.

Inherited if it	only depends on	context.
• When defining an	attribute,	make	up new	properties/attributes that would make	it	

easy to compute.
• Don't think about the	order	of computation.

A

B C
x
y

The	compiler	main	program	becomes	
very	simple:

7

//	Sketch:
public class	Compiler	{
public	static	voidmain(String[]	args)	{
Program	program =	new Parser().parse(new Scanner());
if (program.errors().isEmpty())	{
printCode(program.code());

}
else {
printErrors(program.errors());

}
}

}

All	attributes	(e.g.,	code and	errors)	are	automatically	available	as	soon	
as	the	AST	(program)	has	been	constructed	by	the	parser.
Calling	an	attribute	causes	it	to	be	evaluated	(on-demand	evaluation).

Review	of JastAdd mechanisms

8

Synthesized
Inherited
Broadcasting
Reference
Parameterized
NTA
Collection
Circular

Synthesized attribute

9

B
syn	x

Aeq ...	=		...	getB.x ...

eq B.x =	...

Define in	the	node itself.	Use in	parent.

Inherited attribute attribute

10

B
inh x

Aeq A.getB.x =	...

eq ...	=	...	x	...

Use in	the	node itself.	Define in	a	parent.	

Broadcasting

11

A

C
inh x

eq A.getB.x =	...

eq ...	=	...	x	...

The	definition	does not	have to be	in	the	immediate parent.	

B

Reference attributes

12

A

B
x

eq B.aC =	...
eq ...	=	...	aC.x ...

An	attribute can be	a	reference to another node.
Attributes of that node can be	accessed.

C
aC

Parameterized attributes

13

eq B.p(C	c)	=	...

An	attribute can have parameters.
There is	one attribute instance for	each possible parameter	combination.

A

B C
p(c1)=	...

C C

p(c2)=	...

p(null)=	...
p(c3)=	...

Nonterminal attributes (NTAs)

14

nta C	A.n =	...

An	attribute can be	a	new	fresh subtree.

A

B C

n

D E

Parameterized nonterminal attribute

15

nta C	A.n(String	s)	=	...

An	NTA	can be	parameterized.	

A

B

n("a")

C

D E

n("b") n("c")

C

D F

C

G E

Collection	attributes

16

coll Set	A.c()	[new	HashSet()]	with add

A	collection is	a	combination	of contributions.

A

B

c	=	{	...	}

C

D E

B	contributes x	...
x	=	...

E	contributes y	...
y	=	...

Circular attributes

17

syn	Set	B.c()	circular [new	HashSet()]	=	...	next().c()	...;

A	circular attribute depends (transitively)	on	itself.
The	evaluation algorithm uses fixed point iteration.

A

B

c	=	{	...	}

B
next next

c	=	{	...	}

