
EDAN65:	Compilers,	Lecture 07	B

Introduction to Attribute Grammars
synthesized,	inherited,	broadcasting

Görel	Hedin
Revised:	2017-09-18



This lecture

Semantic analyzer

Intermediate
code generator

Optimizer

Target	code
generator

2

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions

Context-free
grammar

Attribute
grammar

machine

runtime system

stack

heap

code
and
data

objects

activation
records

Interpreter

target code

tokens

Attributed AST

intermediate code

source	code (text)

AST	(Abstract	syntax	tree)

intermediate code

garbage
collection

Virtual
machine

Visitors
Inter-type declared methods
Attribute grammars



Computations on	the	AST

3

IMPERATIVE	COMPUTATIONS
• Define methods that "do"	something.
• Side-effects

• Modify objects
• Output	to files

• Useful for
• Execution/Interpretation
• Unparsing
• Printing	error messages

• Technique
• Inter-type declared methods
• Visitors

DECLARATIVE	COMPUTATIONS
• Derived properties of nodes
• No	side-effects
• Useful for	computing

• Name bindings
• Types of expressions
• Error information

• Technique
• Attribute grammars



Example derived	properties

4

int gcd2(int a, int b) {
if (b == 0) {
return a;

} 
return gcd2(b, a % b);

} 

Does	this method have any compile-time errors?

What is	the	type of this expression?

What is	the	declaration of this b?

Attribute grammars:
Express	these properties as	attributes of AST	nodes.
Define the	attributes by	simple	directed equations.
The	equations can be	solved automatically.



Simple	example
attributes and	equations

5

b c

AST	node

x y

z

z

attribute

v

eq z=b.x+1
eq c.y=z+c.v

eq x=2

eq a0	=	f(a1,	...,	an)
equation:

defined attribute

function of other attributes

eq v=5

What is	the	value of y?
Solve the	equation system!
(Easy!	Just	use substitution.)



Simple	example
synthesized and	inherited attributes

6

b c

syn x inh y

syn z

syn v

eq z=b.x+1
eq c.y=z+c.v

eq x=2

defines attribute in	the	node – the	attribute is	synthesized

defines attribute in	the	child – the	attribute is	inherited

eq v=5

Donald	Knuth introduced attribute grammars	in	1968.
The	term	"inherited"	is	not related to inheritance in	object-orientation.
Both terms	originated during the	1960s.



Simple	example
declaring attributes and	equations in	a	(JastAdd)	grammar

7

A

CB

getB getC

syn	x inh y

syn	z

syn	v

eq z=b.x+1
eq c.y=z+c.v

eq x=2 eq v=5

Abstract	grammar:
A ::= B C;
B;
C;

Attribute grammar module:

aspect SomeAttributes {
syn int A.z();
syn int B.x();
syn int C.v();
inh int C.y();
eq A.z() = getB().x()+1;
eq A.getC().v() = z() + getC().v();
eq B.x() = 2;
eq C.v() = 5;

}
uses inter-type declarations for	attributes and	equations

Note!	The	grammar is	declarative.	The	order	of the	equations is	irrelevant.
JastAdd solves the	equation system	automatically.



Some shorthands

8

These rules:

syn int A.z();
eq A.z() = getB().x()+1;

are equivalent to:

syn int A.z() = getB().x()+1;

and	we could also use method body syntax:

syn int A.z() {
return getB().x()+1;

}



Equations must	be	free from	
(externally visible)	side effects

9

While this is	formulated as	a	method,	executing it	has	no	side-effects,	so	this is	fine.

syn int A.z() {
return getB().x()+1;

}

It	is	also fine	to have assignments to local
variables,	like	this.	The	effect of changing r	
is	not	visible after executing the	method.
syn int A.z() {
int r = 0;
r = getB().x()+1;
return r;

}



Equations must	be	free from	
(externally visible)	side effects

10

What is	wrong with this attribute grammar?

syn int A.x() = Globals.variable;

syn int B.y() {
Globals.variable++;
return 3;

}



Equations must	be	free from	
(externally visible)	side effects

11

What is	wrong with this attribute grammar?

syn int A.x() = Globals.variable;

syn int B.y() {
Globals.variable++;
return 3;

}

Equations are not	allowed to change other than
local data.	If	they do,	they are not	equations.

Warning!	JastAdd cannot discover if you have side-
effects in	your equations!	If	your definitions	rely on	
global	data	that is	changed,	the	wrong results will
be	computed.



Well-formed attribute grammar

12

Abstract	grammar:
A ::= B C;
B;
C;

Attribute grammar module:

aspect SomeAttributes {
syn int A.z();
syn int B.x();
syn int C.v();
inh int C.y();
eq A.z() = getB().x()+1;
eq A.getC().v() = z() + getC().v();
eq B.x() = 2;
eq C.v() = 5;

}

An	attribute grammar is	well-formed,	if
there is	exactly one defining equation
for	each attribute in	any AST.

JastAdd checks	this at	compile time.



Well-defined attribute grammar

13

Is	this attribute grammar well-defined?

aspect SomeAttributes {
syn int A.c() = d();
syn int A.d() = c();

}

An	attribute grammar is	well-defined,
if it	has	a	computable unique solution	for	any AST.

An	ordinary attribute grammar is	well-defined
if it	is	well-formed and	non-circular.

Circular attribute grammar.	Well-formed,	but not	well-defined.

JastAdd checks	circularity at	runtime.

It	is	possible to allow circular attributes,	but they will then
have to be	explicitly declared as	circular.	See later	lecture.



Abstract	grammar
defines the	structure of ASTs

14

Abstract	grammar: Example AST	for	"a	+	b	+	c"
(an	instance of the	abstract	grammar)abstract Exp;

Add : Exp ::= Left:Exp Right:Exp;
IdUse : Exp ::= <ID>; Add

IdUseAdd

IdUseIdUse

Left

Left

Right

Right

ID="a" ID="b"

ID="c"

The	terminal	symbols	(like	ID)	are
intrinsic attributes – constructed
when building the	AST.	They are not	
defined by	equations.



Attribute grammars
extends abstract	grammars	with attributes

15

Abstract	grammar: Example AST	for	"a	+	b	+	c"
(an	instance of the	abstract	grammar)abstract Exp;

Add : Exp ::= Left:Exp Right:Exp;
IdUse : Exp ::= <ID>; Add

IdUseAdd

IdUseIdUse
ID="a" ID="b"

ID="c"

Attribute grammar modules:

decl=... decl=...

decl=...
syn IdDecl IdUse.decl() = ...;

syn Type Exp.type();
eq Add.type() = ...;
eq IdUse.type() = ...;

type=... type=...

type=...

type=...

type=...

Each declared attribute ... ...	will have instances in	the	AST



Attributes and	equations

16

Abstract	grammar: Example AST	for	"a	+	b	+	c"
(an	instance of the	abstract	grammar)abstract Exp;

Add : Exp ::= Left:Exp Right:Exp;
IdUse : Exp ::= <ID>; Add

IdUseAdd

IdUseIdUse
ID="a" ID="b"

ID="c"
Think	of attributes as	"fields"	in	the	tree nodes.

Each equation defines an	attribute in	terms	of
other attributes in	the	tree.

syn Type ASTClass.attribute();

eq definedAttribute = function of other attributes;

An	evaluator computes the	values of the	attributes (solves the	equation system).
Think	of the	equations as	"methods"	called by	the	evaluator.



Attribute mechanisms

17

Synthesized* – the	equation is	in	the	same	node as	the	attribute

Inherited* – the	equation is	in	an	ancestor

Broadcasting* – the	equation holds for	a	complete subtree

Reference – the	attribute can be	a	reference to an	AST	node.

Parameterized – the	attribute can have parameters

NTA – the	attribute is	a	"nonterminal"	(a	fresh node or	subtree)

Collection – the	attribute is	defined by	a	set	of contributions,	instead of by	an	equation.

Circular – the	attribute may depend on	itself (solved using fixed-point iteration)

*	Treated in	this lecture



Synthesized attributes

18

A

B

Synthesized attribute:
The	equation is	in	the	same	node as	the	attribute.

s	=	...

eq s() = f(...);

For	computing properties that depend on	information	in	the	node
or	its children.

Typically used for	propagating information	upwards in	the	tree.



Synthesized attributes,	example 1

19

A

B

A ::= B;
B;

syn int B.s() = 3;

Draw	the	attribute and	its value!



Synthesized attributes,	example 1

20

A

B
s	=	3

A ::= B;
B;

syn int B.s() = 3;

Or	equivalently,	write the	declaration and	equation separately.
syn int B.s();
eq B.s() = 3;

Or	equivalently,	write the	equation as	a	method body:
syn int B.s() {
return 3;

}

Nota	bene!
The	method body must	be	free of
externally visible side-effects.

int B.counter = 0; // Ordinary field
syn int B.s() {
counter++; // Visible side-effect
return counter;

}

Don't do	this!

Warning!
Side-effects are not	checked by	JastAdd.
The	attributes will get	inconsistent values.



Synthesized attributes,	example 2

21

A

D

A ::= B;
abstract B;
C : B;
D : B;
E : D;

syn int B.s();
eq C.s() = 4;
eq D.s() = 5;
eq E.s() = 6;

A

C
Different	subclasses can have different	equations.

A

E

Three	different	ASTs.
Draw	the	attributes and	their values!



Synthesized attributes,	example 2

22

A

D
s	=	5

A ::= B;
abstract B;
C : B;
D : B;
E : D;

syn int B.s();
eq C.s() = 4;
eq D.s() = 5;
eq E.s() = 6;

A

C
s	=	4

Different	subclasses can have different	equations.

Note	that equations can override equations in	superclasses,
in	analogy to how methods can override methods in	OO	languages.

JastAdd checks	that each concrete class has	equations for	all	its synthesized attributes.

A	synthesized attribute is	similar to a	side-effect free method,	but:
• its value is	cached (memoized)
• circularity is	checked at	runtime (results in	exception)

A

E
s	=	6



Inherited attributes

23

A

C

Inherited attribute:
The	equation is	in	an	ancestor

s	=	...

eq getB().s() = f(...);

B

For	computing a	property that depends on	the context of the	node.

Typically used for	propagating information	downwards in	the	tree.



Inherited attributes,	example 1

24

A ::= B C;
B;
C;

inh int B.i();
eq A.getB().i() = 2;

Draw	the	attribute and	its value!

A

CB



Inherited attributes,	example 1

25

A ::= B C;
B;
C;

inh int B.i();
eq A.getB().i() = 2;

A

C
i	=	2

B



Inherited attributes,	example 2

26

A ::= Left:B Right:B;
B;

inh int B.i();
eq A.getLeft().i() = 2;
eq A.getRight().i() = 3;

Draw	the	attributes and	their values!

A

BB

The	parent can specify different	equations
for	its different	children.



Inherited attributes,	example 2

27

A ::= Left:B Right:B;
B;

inh int B.i();
eq A.getLeft().i() = 2;
eq A.getRight().i() = 3;

A

BB
i	=	2 i	=	3

The	parent can specify different	equations
for	its different	children.

This is	useful,	for	example,	when defining scope rules
for	qualified access.	The	lookup attributes should have
different	values for	the	different	IdUses.

Dot

IdUseIdUse
ID="a" ID="a"

lookup("a")	=	... lookup("a")	=	...



Inherited attributes,	example 3

28

A ::= Left:B Right:B;
B ::= C D;
C;
D ::= E;
E;

eq A.getLeft().i() = 2;
eq A.getRight().i() = 3;
inh int C.i();
inh int E.i();

Draw	the	attributes and	their values!

A

BB
The	equations hold for	the	complete children subtrees.

C D C D

E E



Inherited attributes,	example 3

29

A ::= Left:B Right:B;
B ::= C D;
C;
D ::= E;
E;

eq A.getLeft().i() = 2;
eq A.getRight().i() = 3;
inh int C.i();
inh int E.i();

A

BB
The	equations hold for	the	complete children subtrees.

C D C D

E E
i	=	2 i	=	3

i	=	2 i	=	3

This is	called broadcasting.



Inherited attributes,	example 4

30

A ::= Left:B Right:B;
B ::= C D;
C;
D ::= E;
E;

Draw	the	attributes and	their values!

A

BB

C D C D

E E

eq A.getLeft().i() = 2;
eq A.getRight().i() = 3;
eq B.getD().i() = i() + 5;
inh int B.i();
inh int C.i();
inh int E.i();

An	equation can be	overruled in	a	subtree.
The	nearest equation holds.



Inherited attributes,	example 4

31

A ::= Left:B Right:B;
B ::= C D;
C;
D ::= E;
E;

eq A.getLeft().i() = 2;
eq A.getRight().i() = 3;
eq B.getD().i() = i() + 5;
inh int B.i();
inh int C.i();
inh int E.i();

A

BB
An	equation can be	overruled in	a	subtree.
The	nearest equation holds.

C D C D

E E
i	=	7

i	=	2

i	=	2

i	=	8

i	=	3

i	=	3



Inherited attributes,	example 5

32

A ::= B C;
B ::= D;
C ::= D;
D;

eq B.getD().i() = 6;
inh int D.i();

A

CB

There must	be	an	equation for	each attribute in	
any possible AST.

What is	the	problem	with this grammar?

D D

Draw	the	attributes and	their values!



Inherited attributes,	example 5

33

A ::= B C;
B ::= D;
C ::= D;
D;

eq B.getD().i() = 6;
inh int D.i();

A

CB

There must	be	an	equation for	each attribute in	
any possible AST.

What is	the	problem	with this grammar?

D D
i	=	6 i	=	???

This attribute has	no	equation!
JastAdd will find this and	report an	error.

Where can we add an	equation to solve the	problem?

In	C	or	A.	Or	in	their superclass ASTNode.



Broadcasting	of inherited attributes

34

JastAdd:
Equation for	inherited attribute
is	"broadcasted"	to complete subtree.
No	"copy	rules"	are needed.

C

A

inh x

B

D

syn	y eq c.x=y

Traditional AG:
Equation for	inherited attribute
must	be	in	the	immediate parent.
Leads to "copy	rules".

C

A

inh x

B

D

syn	y eq c.x=y

inh x
eq d.x=x

copy	rule



Inherited attributes,	example 6

35

A ::= B C;
B ::= D;
C ::= D;
D;

eq A.getChild().i() = 8;
inh int D.i();

A

CB

The	parent can write an	equation that holds for	all	children.

D D

Draw	the	attributes and	their values!



Inherited attributes,	example 6

36

A ::= B C;
B ::= D;
C ::= D;
D;

eq A.getChild().i() = 8;
inh int D.i();

A

CB

The	parent can write an	equation that holds for	all	children.

D DThis is	equivalent to writing an	equation for	each child:

eq A.getB().i() = 8;
eq A.getC().i() = 8;
inh int D.i();

i	=	8 i	=	8



Inherited attributes,	example 7

37

A ::= B*;
B ::= C;
C; A

BB

For	list	children,	an	index	can be	used in	the	equation

C C

Draw	the	attributes and	their values!

List

B

C

eq A.getB(int index).i() = (index+1) * (index+1);
inh int C.i();



Inherited attributes,	example 7

38

A ::= B*;
B ::= C;
C;

eq A.getB(int index).i() = (index+1) * (index+1);
inh int C.i();

A

BB

For	list	children,	an	index	can be	used in	the	equation

C C
i	=	1 i	=	4

List

B

C
i	=	9

This is	useful,	for	example,	when defining name analysis with
declare-before-use semantics.

index	=	0 index	=	1 index	=	2implicit	attributes



Demand evaluation

39

IdUse

Assign

IdUse

Block

IdDeclType

Decl

ID="x" ID="x" ID="y"

decl
lookup("x")

Program

ListList

localLookup("x")

Attributes are evaluated on	demand.
Simple	recursive caching algorithm:

If	not	cached
find the	equation
compute its right-hand	side
cache	the	value
fi
Return the	cached value

Program	p	=	...
Assign a	=	p.getBlock().getStmt(0);
System.out.println(a.getTo().decl());
System.out.println(a.getFrom().decl());

Example program
demanding attributes:

decl
lookup("y")

localLookup("y")
lookup("y")

1
2

3

4
5

6
7

p

a



Summary questions

40

• What is	an	attribute grammar?
• What is	an	intrinsic attribute?
• What is	an	externally visible side-effect?	Why are they not	allowed in	the	
equations?

• What is	a	synthesized attribute?
• What is	an	inherited attribute?
• What is	broadcasting?
• What is	the	difference between a	declarative and	an	imperative specification?
• What is	demand evaluation?
• Why are attributes cached?

You can now do	all	of Assignment 3.
But it	is	recommended to do	the	7B	quiz first!


