EDANG65: Compilers, Lecture 05 A
LL parsing
Nullable, FIRST, and FOLLOW

Gorel Hedin
Revised: 2017-09-11

runtime system

______ ‘l’- - — — — = = Source code (text)
~N / | —
Lexical analyzer activation
Regu'?r —> y - stack
expressions (scanner) records
——— - — ‘ll______-tokens ——————— -
Context-free , Syntactic anal zer\ i
I Yy Yy LL parsing garbage
grammar (parser) Nullable, FIRST, FOLLOW)
. / collection
—_—— - - - — \l/_ — — — — — - AST (Abstract syntax tree)
Attribute (| - heap
—> Semantic analyzer :
grammar v objects
—_——— - —— ‘l'_ — — — — — = Attributed AST
Intermediate
Interpreter
code generator | L
______ ‘l'_ — — — — — - intermediate code h code
Virtual - and
{ Optimizer] machine data

______ ‘l'_ - = = = = = intermediate code

generator [maChme}

______ ‘l'._____- target code)

{ Target code

Algorithm for constructing an LL(1) parser
Fairly simple.

The non-trivial part: how to select the correct production p
for X, based on the lookahead token.

X pl: X-> ...
X >

Which tokens can occur in the FIRST position?

Can one of the productions derive the empty
t, ...t t .. string? l.e., is it "Nullable"?
If so, which tokens can occur in the FOLLOW

T T position?

FIRST FOLLOW

Steps in constructing an LL(1) parser

Write the grammar on canonical form
Compute Nullable, FIRST, and FOLLOW.

Use them to construct a table. It shows what production
to select, given the current lookahead token.

Conflicts in the table? The grammar is not LL(1).

No conflicts? Straight forward implementation using
table-driven parser or recursive descent.

Example:
Construct the LL(1) table for this grammar:

pl: statement -> assignment

p2: statement -> compoundStmt
p3: assignment -> ID "=" expr ;"

p4: compoundStmt -> "{" statements "}"
p5: statements -> statement statements

p6: statements -> ¢

DI A G o
statement
assignment
compoundStmt

statements

For each production p: X -> v, we are interested in:
FIRST(y) — the tokens that occur first in a sentence derived from .
Nullable(y) —is it possible to derive € from y? And if so:
FOLLOW(X) — the tokens that can occur immediately after an X-sentence.

Example:
Construct the LL(1) table for this grammar:

pl: statement -> assignment

p2: statement -> compoundStmt
p3: assignment -> ID "=" expr ";"

p4: compoundStmt -> "{" statements "}"
p5: statements -> statement statements

p6: statements -> ¢

b =y
statement pl p2
assignment p3

compoundStmt p4
statements p5 pS p6

To construct the table, look at each production p: X -> .

Compute the token set FIRST(y). Add p to each corresponding entry for X.
Then, check if y is Nullable. If so, compute the token set FOLLOW(X),

and add p to each corresponding entry for X.

Example:
Dealing with End of File:

: varDecl -> type ID optlnit
: type -> "integer"

: type -> "boolean"
optlnit -> "=" INT

: optlnit -> ¢

ID

varDecl

type
optinit

integer boolean

INT

Example:

Dealing with End of File:

: S ->varDecl $

: varDecl -> type ID optlnit
: type -> "integer"

: type -> "boolean"
optlnit -> "=" INT

: optlnit -> ¢

ID
S
varDecl
type
optinit

integer boolean

INT

Example:

Dealing with End of File:

p0: S ->varDecl $
pl: varDecl -> type ID optinit
p2: type -> "integer"
p3: type -> "boolean"
p4: optlnit -> "=" INT
p5: optlnit -> ¢
ID integer boolean "=" ;" INT $
PO PO
varDecl pl pl
p2 p3
P4 P>

Example:
Ambiguous grammar:

pl:E->E"+"E
p2: E->ID
p3: E->INT

T ID INT

Example:
Ambiguous grammar:

pl:E->E"+"E
p2: E->ID
p3: E->INT
" ID INT
E pl,p2 pl,p3

Collision in a table entry!
The grammar is not LL(1)

An ambiguous grammar is not even LL(k) —
adding more lookahead does not help.

11

Example:
Unambiguous, but left-recursive grammar:

pl:E->E"*"F
p2: E->F

p3: F->1D

pd: F->INT

o ID INT

Example:

Unambiguous, but left-recursive grammar:

pl:E->E"*"F
p2: E->F
p3: F->1D
p4: F->INT
e ID INT
E p1,p2 p1,p2
F p3 p4

Collision in a table entry!
The grammar is not LL(1)

A grammar with left-recursion is not even LL(k) —
adding more lookahead does not help.

13

Example:
Grammar with common prefix:

pl: E->F"*"E
p2: E->F

p3: F->1D

pd: F->INT

p5: F->"("E")"

Bl ID INT "(" ")"

Example:

Grammar with common prefix:

pl:E->F"*"E
p2: E->F

p3: F->1D

pd: F->INT

p5: F->"("E")"

Bl ID INT "(" ")"

pl,p2 pl,p2 plp2
p3 o P5

Collision in a table entry!
The grammar is not LL(1)

A grammar with common prefix is not LL(1).
Some grammars with common prefix are LL(k), for some k, —

but not this one.

15

Summary: constructing an LL(1) parser

1. Write the grammar on canonical form
2. Compute Nullable, FIRST, and FOLLOW.

3. Use them to construct a table. It shows what production
to select, given the current lookahead token.

4. Conflicts in the table? The grammar is not LL(1).

5. No conflicts? Straight forward implementation using
table-driven parser or recursive descent.

16

s Recall main parsing ideas

S

A X

truvruru..

!

LL(1): decides to build X after seeing the
first token of its subtree.
The tree is built top down.

A X

BC

7N\
truvruru..

!

LR(1): decides to build X after seeing the
first token following its subtree.
The tree is built bottom up.

For each production X ->ywe need to compute
FIRST(y): the tokens that can appear first in a y derivation
Nullable(y): can the empty string be derived from y?
FOLLOW(X): the tokens that can follow an X derivation

17

Algorithm for constructing an LL(1) table

initialize all entries table[X;, t;] to the empty set.

for each production p: X ->y
for each t & FIRST(y)
add p to table[X, t]
if Nullable(y)
for eacht € FOLLOW(X)
add p to table[X, t]

t, t, t; t,
X, pl p2
X, p3 p3 p4

If some entry has more than one element, then the
grammar is not LL(1).

18

Exercise: what is Nullable(X)?

X X < < NN

->d
>XYZ
-> g
->C
->Y
-> 3

Nullable

19

Solution: what is Nullable(X)

Z->d Nullable
Z->XYZ true
Y->¢
Y o> c Y true
X->Y false
X->a

X=>Y=>¢ yes, X is Nullable

Y=>¢

Z=>XYZ=>YYZ=>*7=>XYZ...

yes, Y is Nullable

no, Z is not Nullable, we cannot derive ¢

20

Definition of Nullable

Nullable(y) is true iff the empty sequence can be derived from v:
Nullable(y) = true, 3 (y =>* ¢)
false, otherwise
where 7 is a sequence of terminals and nonterminals

Equation system for Nullable, given G=(N,T,R.S)
Nullable(g) == true

Nullable(t) == false
wheret € T, i.e., tis a terminal symbol

Nullable(X) == Nullable (y,) || ... || Nullable (y,)
where X ->v,, ... X-> v, are all the productions for X in P

Nullable(sy) == Nullable (s) && Nullable ()
wheres & N U T, i.e., sis a nonterminal or a terminal

(1)
(2)

(3)

(4)

The equations for Nullable are recursive.
How would you write a program that computes Nullable (X)?
Just using recursive functions could lead to nontermination!

21

Fixed-point problems

Computing Nullable(X) is an example of a fixed-point problem.
These problems have the form:
x == f(x)

Can we find a value x for which the equation holds (i.e., a solution)?
x is then called a fixed point of the function f.

Fixed-point problems can (sometimes) be solved using iteration:
Guess an initial value x,, then apply the function iteratively, until the fixed point
is reached:

X4 := f(Xo);
X, := f(x,);
X, = f(x,4);

until x == x_ ;

This is called a fixed-point iteration, and x,, is the fixed point.

22

Implement Nullable by a fixed-point iteration

represent Nullable as an array nlbl[] of boolean variables
initialize all nlbl[X] to false

repeat
changed = false
for each nonterminal X with productions X -> v, ..., X->y, do
newValue = nlbl(y,) || ... || nlbl(y,)
if newValue != nlbl[X] then
nlbl[X] = newValue
changed = true
fi
do
until Ichanged

where nlbl(y) is computed using the current values in nlbl[].

The computation will terminate because
- the variables are only changed monotonically (from false to true)
- the number of possible changes is finite (from all false to all true)

23

Exercise: compute Nullable(X)

nlbl[]
Z->d iter, iter, iter, iter,
Z->XYZ X f
Y->¢
Y->cC Y f
X->Y Z f
X->a

In each iteration, compute:

for each nonterminal X with productions X ->vy,, ..., X-> 7,
newValue = nlbl(y,) || ... || nlbl(y,)

where nlbl(y) is computed using the current values in nlbl[].

Solution: compute Nullable(X)

nlbl[]
Z->d iter, iter, iter, iter,
£->XY2Z X f f t t
Y->¢
Y ->c Y f t t t
X->Y Z f f f f
X->a

In each iteration, compute:

for each nonterminal X with productions X ->vy,, ..., X-> 7,
newValue = nlbl(y,) || ... || nlbl(y,)

where nlbl(y) is computed using the current values in nlbl[].

25

Definition of FIRST

FIRST(y) is the set of tokens that can occur first in sentences derived from v :

FIRST(y) = {t € T | y =>* t 8}

Equation system, given G=(N,T,R.S)
FIRST(g) ==

FIRST(t) =={t}
wheret € T, i.e., tis a terminal symbol

FIRST(X) == FIRST(y,) U ... U FIRST(y,)
where X ->vy,, ... X ->7,are all the productions for X in P

FIRST(sy) == FIRST(s) U (if Nullable(s) then FIRST(y) else @ fi)
wheres € N U T, i.e., sis a nonterminal or a terminal

(1)
(2)

(3)

(4)

The equations for FIRST are recursive.
Compute using fixed-point iteration.

26

Implement FIRST by a fixed-point iteration

represent FIRST as an array FIRST[] of token sets
initialize all FIRST[X] to the empty set

repeat
changed = false
for each nonterminal X with productions X -> v, ..., X->y, do
newValue = FIRST(y,) U ... U FIRST(y,)
if newValue != FIRST[X] then
FIRST[X] = newValue
changed = true
fi
do
until Ichanged

where FIRST(y) is computed using the current values in FIRST]].

The computation will terminate because

- the variables are changed monotonically (using set union)
- the largest possible set is finite: T, the set of all tokens

- the number of possible changes is therefore finite

27

Solution: compute FIRST(X)
Z->d Nullable
L->XYZ t
Y->¢
Y->cC Y t
X->Y Z f
X->a
FIRST[]
iter, iter, iter, itery
%)
Y %)
%)

In each iteration, compute:

for each nonterminal X with productions X ->vy,, ..., X-> v,
newValue = FIRST(y,) U ... U FIRST(y,)

where FIRST(y) is computed using the current values in FIRST[].

28

Exercise: compute FIRST(X)
Z->d Nullable
Z->XYZ t
Y->¢
Y->c Y t
X->Y Z f
X->a
FIRST[]
iter, iter, iter, iter,
o {a} {a, c} {a, c}
Y o {c} {c} {c}
@ {a, c, d} {a, c, d} {a, c, d}

In each iteration, compute:

for each nonterminal X with productions X ->vy,, ..., X-> v,
newValue = FIRST(y,) U ... U FIRST(y,)

where FIRST(y) is computed using the current values in FIRST[].

29

Definition of FOLLOW

FOLLOW(X) is the set of tokens that can occur as the first token following X, in
any sentential form derived from the start symbol S:

FOLLOW(X) = {t E T | S=>* a. X t B}

The nonterminal X occurs in the right-hand side of a number of productions.

Let Y ->y X 0 denote such an occurrence, where y and o are arbitrary sequences
of terminals and nonterminals.

Equation system, given G=(N,T,R.S)

FOLLOW(X) == U FOLLOW(Y ->yX &), (1)
over all occurrences Y ->y X o

and where
FOLLOW(Y ->y X 8) == (2)
FIRST(8) U (if Nullable(8) then FOLLOW(Y) else @ fi)

The equations for FOLLOW are recursive.
Compute using fixed-point iteration.

sentential form — sequence of terminal and nonterminal symbols

30

Implement FOLLOW by a fixed-point iteration

represent FOLLOW as an array FOLLOW[] of token sets
initialize all FOLLOW|[X] to the empty set

repeat
changed = false
for each nonterminal X do

newValue == U FOLLOW(Y -> v X 0), for each occurrence Y ->y X o
if newValue = FOLLOW[X] then
FOLLOWI[X] = newValue
changed = true
fi
do
until !'changed

where FOLLOW(Y ->y X &) is computed using the current values in FOLLOW[].

Again, the computation will terminate because
- the variables are changed monotonically (using set union)
- the largest possible set is finite: T

31

Exercise: compute FOLLOW(X)

S->7% Nullable FIRST
Z->d X t {a, c}
.->XY/Z
Y->¢ Y t {c}
Y->cC Z f {a, c, d}
X->Y
X->a FOLLOWI]
The grammar has iter, iter, iter, itery
been extended with o
end of file, $.
Y %
%)

In each iteration, compute:

newValue == U FOLLOW(Y ->y X 0), for each occurrence Y ->y X o

where FOLLOW(Y -> vy X 0) is computed using the current values in FOLLOWT[].

32

Solution: compute FOLLOW(X)

S>7% Nullable FIRST

Z->d X t {a, c}

Z->XYZ

Y->¢ Y t {C}

Y->c Z f {a, c, d}

X->Y

X->a FOLLOWI]
The grammar has iter, iter, iter, itery
been ex'tended with X o a, c, d) a, c, d)
end of file, $.

Y @ {a, c, d} {a, c, d}
2 {$} {$}

In each iteration, compute:

newValue == U FOLLOW(Y ->y X &), for each occurrence Y ->y X §

where FOLLOW(Y -> vy X 0) is computed using the current values in FOLLOWT[].

33

Summary questions

Construct an LL(1) table for a grammar.

What does it mean if there is a collision in an LL(1) table?

Why can it be useful to add an end-of-file rule to some grammars?
How can we decide if a grammar is LL(1) or not?

What is the definition of Nullable, FIRST, and FOLLOW?

What is a fixed-point problem?

How can it be solved using iteration?

How can we know that the computation terminates?

34

