
EDAN65:	Compilers,	Lecture 05	A

LL	parsing
Nullable,	FIRST,	and	FOLLOW

Görel	Hedin
Revised:	2017-09-11

Semantic analyzer

Intermediate
code generator

Optimizer

Target	code
generator

2

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions

Context-free
grammar

Attribute
grammar

machine

runtime system

stack

heap

code
and
data

objects

activation
records

Interpreter

target code

tokens

Attributed AST

intermediate code

source	code (text)

AST	(Abstract	syntax	tree)

intermediate code

garbage
collection

Virtual
machine

LL	parsing
Nullable,	FIRST,	FOLLOW

Algorithm	for	constructing	an	LL(1)	parser

3

Fairly simple.

The	non-trivial	part:	how to select the	correct production p
for	X,	based on	the	lookahead token.	

X

...				t1				 ...					tn tn+1 ...

FIRST FOLLOW

p1:	X	->	...
p2:	X	->	...

Which	tokens	can	occur	in	the	FIRST	position?

Can	one	of	the	productions	derive	the	empty	
string?	I.e.,	is	it	"Nullable"?
If	so,	which	tokens	can	occur	in	the	FOLLOW	
position?

Steps	in	constructing	an	LL(1)	parser

4

1. Write the	grammar on	canonical form

2. Compute	Nullable,	FIRST,	and	FOLLOW.

3. Use	them	to	construct	a	table.	It	shows	what production
to select,	given	the	current lookahead token.

4. Conflicts in	the	table?	The	grammar is	not	LL(1).

5. No	conflicts?	Straight	forward	implementation	using
table-driven	parser	or	recursive descent.

t1 t2 t3 t4
X1 p1 p2

X2 p3 p3 p4

Example:
Construct	the	LL(1)	table	for	this	grammar:

5

p1:	statement ->	assignment
p2:	statement ->	compoundStmt
p3:	assignment ->	ID	"="	expr ";"
p4:	compoundStmt ->	"{" statements "}"
p5:	statements ->	statement statements
p6:	statements ->	e

ID	 "=" ";" "{" "}"

statement

assignment

compoundStmt	

statements	

For	each production p:	X ->	g,	we are interested in:
FIRST(g)	– the	tokens	that occur first in	a	sentence derived from	g.
Nullable(g)	– is	it	possible to derive e from	g?	And	if so:
FOLLOW(X)	– the	tokens	that can occur immediately after an	X-sentence.

Example:
Construct	the	LL(1)	table	for	this	grammar:

6

p1:	statement ->	assignment
p2:	statement ->	compoundStmt
p3:	assignment ->	ID	"="	expr ";"
p4:	compoundStmt ->	"{" statements "}"
p5:	statements ->	statement statements
p6:	statements ->	e

ID	 "=" ";" "{" "}"

statement p1 p2

assignment p3

compoundStmt	 p4

statements	 p5 p5 p6

To	construct the	table,	look	at	each production p:	X ->	g.
Compute the	token	set	FIRST(g).	Add p to each corresponding entry for	X.
Then,	check	if g is	Nullable.	If	so,	compute the	token	set	FOLLOW(X),
and	add p to each corresponding entry for	X.

Example:
Dealing	with	End	of	File:

7

p1:	varDecl ->	type ID	optInit
p2:	type ->	"integer"
p3:	type ->	"boolean"
p4:	optInit ->	"=" INT
p5:	optInit ->	e

ID integer boolean "=" ";" INT

varDecl

type

optInit

Example:
Dealing	with	End	of	File:

8

p0:	S	->	varDecl $
p1:	varDecl ->	type ID	optInit
p2:	type ->	"integer"
p3:	type ->	"boolean"
p4:	optInit ->	"=" INT
p5:	optInit ->	e

ID integer boolean "=" ";" INT $

S

varDecl

type

optInit

Example:
Dealing	with	End	of	File:

9

p0:	S	->	varDecl $
p1:	varDecl ->	type ID	optInit
p2:	type ->	"integer"
p3:	type ->	"boolean"
p4:	optInit ->	"=" INT
p5:	optInit ->	e

ID integer boolean "=" ";" INT $

S p0 p0

varDecl p1 p1

type p2 p3

optInit p4 p5

Example:
Ambiguous	grammar:

10

p1:	E	->	E	"+"	E
p2:	E	->	ID
p3:	E	->	INT

"+" ID INT

E

Example:
Ambiguous	grammar:

11

p1:	E	->	E	"+"	E
p2:	E	->	ID
p3:	E	->	INT

"+" ID INT

E p1,	p2 p1, p3

Collision	in	a	table	entry!
The	grammar	is	not	LL(1)

An	ambiguous	grammar	is	not	even	LL(k)	–
adding	more	lookahead	does	not	help.

Example:
Unambiguous,	but	left-recursive	grammar:

12

p1:	E	->	E	"*"	F
p2:	E	->	F
p3:	F	->	ID
p4:	F	->	INT

"*" ID INT

E

F

Example:
Unambiguous,	but	left-recursive	grammar:

13

p1:	E	->	E	"*"	F
p2:	E	->	F
p3:	F	->	ID
p4:	F	->	INT

"*" ID INT

E p1,p2 p1,p2

F p3 p4

Collision	in	a	table	entry!
The	grammar	is	not	LL(1)

A	grammar	with	left-recursion	is	not	even	LL(k)	–
adding	more	lookahead	does	not	help.

Example:
Grammar	with	common	prefix:

14

p1:	E	->	F	"*"	E
p2:	E	->	F
p3:	F	->	ID
p4:	F	->	INT
p5:	F -> "("	E ")"

"*" ID INT "(" ")"

E

F

Example:
Grammar	with	common	prefix:

15

p1:	E	->	F	"*"	E
p2:	E	->	F
p3:	F	->	ID
p4:	F	->	INT
p5:	F -> "("	E ")"

"*" ID INT "(" ")"

E p1,p2 p1,p2 p1,p2

F p3 p4 p5

Collision	in	a	table	entry!
The	grammar	is	not	LL(1)

A	grammar	with	common	prefix	is	not	LL(1).
Some	grammars	with	common	prefix	are	LL(k),	for	some	k,	–

but	not	this	one.

Summary:	constructing	an	LL(1)	parser

16

1. Write the	grammar on	canonical form

2. Compute	Nullable,	FIRST,	and	FOLLOW.

3. Use	them	to	construct	a	table.	It	shows	what production
to select,	given	the	current lookahead token.

4. Conflicts in	the	table?	The	grammar is	not	LL(1).

5. No	conflicts?	Straight	forward	implementation	using
table-driven	parser	or	recursive descent.

Recall	main	parsing	ideas

17

LR(1):	decides to build X	after seeing the	
first token	following its subtree.
The	tree is	built bottom up.

A X

BC

For	each production X	-> gwe need to compute
FIRST(g):	the	tokens	that can appear first in	a	g derivation
Nullable(g):	can the	empty string	be	derived from	g?
FOLLOW(X):	the	tokens	that can follow an	X	derivation

t		r		u		v		r		u		r		u		...

S

A X

LL(1):	decides to build X	after seeing the	
first token	of its subtree.
The	tree is	built top down.

t		r		u		v		r		u		r		u		...

Algorithm	for	constructing	an	LL(1)	table

18

initialize all	entries table[Xi, tj]	to the	empty set.

for	each production p:	X	-> g
for	each t∈ FIRST(g)
add p to table[X,	t]
if Nullable(g)
for	each t	∈ FOLLOW(X)
add p to table[X,	t]

t1 t2 t3 t4
X1 p1 p2

X2 p3 p3 p4

If	some entry has	more than one element,	then the	
grammar is	not	LL(1).

Exercise:	what is	Nullable(X)?	

19

Z ->	d
Z ->	X Y Z
Y ->	e
Y ->	c
X ->	Y
X ->	a

Nullable

X

Y

Z

Solution:	what	is	Nullable(X)	

20

Z ->	d
Z ->	X Y Z
Y ->	e
Y ->	c
X ->	Y
X ->	a

Nullable

X true

Y true

Z false

X =>	Y =>	e yes,	X is	Nullable

Y =>	e yes,	Y is	Nullable

Z =>	XYZ =>	YYZ =>*	Z =>	XYZ ... no,	Z is	not	Nullable,	we	cannot	derive	e

Definition	of Nullable

21

Nullable(g)	is	true	iff	the	empty	sequence	can	be	derived	from	g:
Nullable(g) =	true,	∃(g =>* e)

false,	otherwise
where	g is	a	sequence	of	terminals	and	nonterminals

Equation	system	for	Nullable,	given	G=(N,T,P,S)
Nullable(e) ==	true (1)

Nullable(t) ==	false (2)
where t∈ T,	i.e.,	t	is	a	terminal	symbol

Nullable(X)	==	Nullable	(g1)	||	...	||	Nullable	(gn) (3)
where X ->	g1,	...	X ->	gn are all	the	productions for	X	in	P

Nullable(sg)	==	Nullable	(s)	&&	Nullable	(g) (4)
where s∈ N∪ T,	i.e.,	s is	a	nonterminal or	a	terminal

The	equations	for	Nullable	are	recursive.
How	would	you	write	a	program	that	computes	Nullable	(X)?
Just	using	recursive	functions	could	lead	to	nontermination!

Fixed-point	problems

22

Computing	Nullable(X)	is	an	example	of	a	fixed-point	problem.

These	problems	have	the	form:

x	==	f(x)

Can	we	find	a	value	x	for	which	the	equation	holds	(i.e.,	a	solution)?
x	is	then	called	a	fixed	point of	the	function	f.

Fixed-point	problems	can	(sometimes)	be	solved	using	iteration:
Guess	an	initial	value	x0,	then	apply	the	function	iteratively,	until	the	fixed	point	
is	reached:

x1	:=	f(x0);
x2	:=	f(x1);
...
xn	:=	f(xn-1);

until	xn==	xn-1

This	is	called	a	fixed-point	iteration,	and	xn	is	the	fixed	point.

Implement	Nullable	by	a	fixed-point	iteration

23

The	computation	will	terminate	because
- the	variables	are	only	changed	monotonically	(from	false	to	true)
- the	number	of	possible	changes	is	finite	(from	all	false	to	all	true)

represent Nullable	as	an	array nlbl[]	of boolean variables
initialize all	nlbl[X]	to false

repeat
changed =	false
for	each nonterminal X	with productions X	->	g1,	...,	X	->	gn do
newValue =	nlbl(g1)	||	...	||	nlbl(gn)
if newValue !=	nlbl[X]	then
nlbl[X]	=	newValue
changed =	true

fi
do
until !changed

where nlbl(g)	is	computed using the	current values in	nlbl[].

Exercise:	compute Nullable(X)	

24

Z ->	d
Z ->	X Y Z
Y ->	e
Y ->	c
X ->	Y
X ->	a

iter0 iter1 iter2 iter3
X f

Y f

Z f

nlbl[]

for	each nonterminal X	with productions X	->	g1,	...,	X	->	gn
newValue =	nlbl(g1)	||	...	||	nlbl(gn)

In	each	iteration,	compute:

where nlbl(g)	is	computed using the	current values in	nlbl[].

Solution:	compute	Nullable(X)	

25

Z ->	d
Z ->	X Y Z
Y ->	e
Y ->	c
X ->	Y
X ->	a

iter0 iter1 iter2 iter3
X f f t t

Y f t t t

Z f f f f

nlbl[]

for	each nonterminal X	with productions X	->	g1,	...,	X	->	gn
newValue =	nlbl(g1)	||	...	||	nlbl(gn)

In	each	iteration,	compute:

where nlbl(g)	is	computed using the	current values in	nlbl[].

Definition	of	FIRST

26

FIRST(g) is	the	set	of	tokens	that	can	occur	first in	sentences	derived	from	g :
FIRST(g) =	{t∈ T |	g =>*	t d}

Equation	system,	given	G=(N,T,P,S)
FIRST(e) ==	∅ (1)

FIRST(t) ==	{	t } (2)
where t∈ T,	i.e.,	t	is	a	terminal	symbol

FIRST(X)	==	FIRST(g1)	∪ ...	∪ FIRST(gn) (3)
where X ->	g1,	...	X ->	gn are all	the	productions for	X	in	P

FIRST(sg)	==	FIRST(s)	∪ (if Nullable(s)	then FIRST(g)	else ∅ fi) (4)
where s∈ N∪ T,	i.e.,	s is	a	nonterminal or	a	terminal

The	equations	for	FIRST	are	recursive.
Compute	using	fixed-point	iteration.

Implement FIRST	by	a	fixed-point iteration

27

The	computation	will	terminate	because
- the	variables	are	changed	monotonically	(using	set	union)
- the	largest	possible	set	is	finite:	T,	the	set	of	all	tokens
- the	number	of	possible	changes	is	therefore	finite

represent FIRST	as	an	array FIRST[]	of token	sets
initialize all	FIRST[X]	to the	empty set

repeat
changed =	false
for	each nonterminal X	with productions X	->	g1,	...,	X	->	gn do
newValue =	FIRST(g1)	∪ ...	∪ FIRST(gn)
if newValue !=	FIRST[X]	then
FIRST[X]	=	newValue
changed =	true

fi
do
until !changed

where FIRST(g)	is	computed using the	current values in	FIRST[].

Solution:	compute	FIRST(X)	

28

Z ->	d
Z ->	X Y Z
Y ->	e
Y ->	c
X ->	Y
X ->	a

Nullable

X t

Y t

Z f

for	each nonterminal X	with productions X	->	g1,	...,	X	->	gn
newValue =	FIRST(g1)	∪ ...	∪ FIRST(gn)

In	each	iteration,	compute:

where FIRST(g)	is	computed using the	current values in	FIRST[].

iter0 iter1 iter2 iter3
X ∅

Y ∅

Z ∅

FIRST[]

Exercise:	compute	FIRST(X)	

29

Z ->	d
Z ->	X Y Z
Y ->	e
Y ->	c
X ->	Y
X ->	a

Nullable

X t

Y t

Z f

for	each nonterminal X	with productions X	->	g1,	...,	X	->	gn
newValue =	FIRST(g1)	∪ ...	∪ FIRST(gn)

In	each	iteration,	compute:

where FIRST(g)	is	computed using the	current values in	FIRST[].

iter0 iter1 iter2 iter3
X ∅ {a} {a,	c} {a,	c}

Y ∅ {c} {c} {c}

Z ∅ {a,	c,	d} {a,	c,	d} {a,	c,	d}

FIRST[]

Definition	of FOLLOW

30

FOLLOW(X) is the	set	of	tokens	that can occur as	the	first token	following X,	in	
any sentential form	derived from	the	start	symbol	S:

FOLLOW(X) =	{t∈ T |	S	=>*	a X t b}

The	nonterminal X	occurs in	the	right-hand	side of a	number of productions.

Let Y ->	g X d denote such an	occurrence,	where g and	d are arbitrary sequences
of terminals	and	nonterminals.

Equation	system,	given	G=(N,T,P,S)

FOLLOW(X)	==	∪ FOLLOW(Y ->	g X d), (1)
over	all	occurrences Y ->	g X d

and	where
FOLLOW(Y ->	g X d)	== (2)
FIRST(d)	∪ (if Nullable(d)	then FOLLOW(Y)	else ∅ fi)

The	equations	for	FOLLOW	are	recursive.
Compute	using	fixed-point	iteration.

sentential form	— sequence of terminal	and	nonterminal symbols	

Implement FOLLOW	by	a	fixed-point iteration

31

Again,	the	computation	will	terminate	because
- the	variables	are	changed	monotonically	(using	set	union)
- the	largest	possible	set	is	finite:	T

represent FOLLOW	as	an	array FOLLOW[]	of token	sets
initialize all	FOLLOW[X]	to the	empty set

repeat
changed =	false
for	each nonterminal X	do
newValue ==	∪ FOLLOW(Y ->	g X d),	for	each occurrence Y ->	g X d
if newValue !=	FOLLOW[X]	then
FOLLOW[X]	=	newValue
changed =	true

fi
do
until !changed

where FOLLOW(Y ->	g X d)	is	computed using the	current values in	FOLLOW[].

Exercise:	compute FOLLOW(X)	

32

S	-> Z	$
Z ->	d
Z ->	X Y Z
Y ->	e
Y ->	c
X ->	Y
X ->	a

Nullable FIRST

X t {a,	c}

Y t {c}

Z f {a,	c,	d}

newValue ==	∪ FOLLOW(Y ->	g X d),	for	each occurrence Y ->	g X d

In	each	iteration,	compute:

where FOLLOW(Y ->	g X d)	is	computed using the	current values in	FOLLOW[].

iter0 iter1 iter2 iter3
X ∅

Y ∅

Z ∅

FOLLOW[]

The	grammar has	
been extended with
end	of file,	$.

Solution:	compute FOLLOW(X)	

33

S	-> Z	$
Z ->	d
Z ->	X Y Z
Y ->	e
Y ->	c
X ->	Y
X ->	a

Nullable FIRST

X t {a,	c}

Y t {c}

Z f {a,	c,	d}

newValue ==	U FOLLOW(Y ->	g X d),	for	each occurrence Y ->	g X d

In	each	iteration,	compute:

where FOLLOW(Y ->	g X d)	is	computed using the	current values in	FOLLOW[].

iter0 iter1 iter2 iter3
X ∅ {a,	c,	d} {a,	c,	d}

Y ∅ {a,	c,	d} {a,	c,	d}

Z ∅ {$} {$}

FOLLOW[]

The	grammar has	
been extended with
end	of file,	$.

Summary	questions

34

• Construct an	LL(1)	table	for	a	grammar.
• What does it	mean if there is	a	collision in	an	LL(1)	table?
• Why can it	be	useful to add an	end-of-file rule to some grammars?
• How can we decide if a	grammar is	LL(1)	or	not?
• What is	the	definition	of Nullable,	FIRST,	and	FOLLOW?
• What is	a	fixed-point problem?
• How can it	be	solved using iteration?
• How can we know that the	computation terminates?

