EDAN65: Compilers, Lecture 04 Grammar transformations:

Eliminating ambiguities, adapting to LL parsing

Görel Hedin

Revised: 2018-09-11

This lecture

Space of context-free grammars

LL:
 Builds tree top-down Simple to understand

Ambiguous grammars

Recall: the definition of ambiguity

```
Grammar:
    Exp -> Exp "+" Exp
    Exp -> Exp "*" Exp
    Exp -> INT
```


A CFG is ambiguous if there is a sentence in the language that can be derived by two (or more) different parse trees.

Strategies for dealing with ambiguities

First, decide which parse tree is the desired one.
Eliminate the ambiguity:
Create an equivalent unambiguous grammar.
Usually possible, but there exists grammars for which it cannot be done.
Unambiguous: Only one parse tree can be derived for any string.
However, the parse tree will be different from the original desired one.
Alternatively, use extra rules:
Use the ambiguous grammar.
Add priority and associativity rules to instruct the parser to select the desired parse tree.
Works for some ambiguities.
Supported by some parser generators.

Eliminating ambiguity

Goal: transform an ambiguous grammar to an equivalent unambiguous grammar.

Equivalent grammars

Two grammars, G_{1} and G_{2}, are equivalent if they generate the same language.
I.e., a sentence can be derived from one of the grammars, iff it can be derived also from the other grammar:

$$
\mathrm{L}\left(\mathrm{G}_{1}\right)=\mathrm{L}\left(\mathrm{G}_{2}\right)
$$

Common kinds of ambiguities

- Operators with different priorities:

$$
a+b * c==d, \ldots
$$

- Associativity of operators of the same priority:

$$
a+b-c+d, \ldots
$$

- Dangling else:

$$
\begin{aligned}
& \text { if (a) } \\
& \text { if (b) c = d; } \\
& \text { else e = f; }
\end{aligned}
$$

Example ambiguity: Priority (also called precedence)

```
Exp -> Exp "+" Exp
Exp -> Exp "*" Exp
Exp -> INT
```

Two parse trees for INT "+" INT "*" INT

prio("+") > prio("*")
(would be unexpected and confusing)

Example ambiguity:

Associativity

$$
\begin{aligned}
& \operatorname{Exp}->\operatorname{Exp} "+" \operatorname{Exp} \\
& \operatorname{Exp}->\operatorname{Exp} "-" \operatorname{Exp} \\
& \operatorname{Exp}->\operatorname{Exp} " * * \operatorname{Exp} \\
& \operatorname{Exp}->\text { INT }
\end{aligned}
$$

For operators with the same priority,
how do several in a sequence associate?

Left-associative
(usual for most operators)

Right-associative (usual for the power operator)

Example ambiguity:

Non-associativity

For some operators, it does not make sense to have several in a sequence at all. They are non-associative.

We would like to forbid both trees.
l.e., rule out the sentence from the langauge.

Disambiguating expression grammars

How can we change the grammar so that only the desired trees can be derived?

Idea: Restrict certain subtrees by introducing new nonterminals.

Priority: Introduce a new nonterminal for each priority level: Term, Factor, Primary, ...

Left associativity: Restrict the right operand so it only can contain expressions of higher priority

Right associativity: Restrict the left operand ...

Non-associativity: Restrict both operands

Exercise

```
Ambiguous grammar:
Expr -> Expr "+" Expr
Expr -> Expr "*" Expr
Expr -> ID
Expr -> "(" Expr ")"
```


Equivalent unambiguous grammar:

Solution

You will do this in Assignment 2!

```
Ambiguous grammar:
Expr -> Expr "+" Expr
Expr -> Expr "*" Expr
Expr -> ID
Expr -> "(" Expr ")"
```

```
Equivalent unambiguous grammar:
Expr -> Expr "+" Term
Expr -> Term
Term -> Term "*" Factor
Term -> Factor
Factor -> ID
Factor -> "(" Expr ")"
```

Here, we introduce a new nonterminal, Term, that is more restricted than Expr. That is, from Term, we can not derive any new additions.

For the addition production, we use Term as the right operand, to make sure no new additions will appear to the right. This gives left-associativity.

For the multiplication production, we use Term, and the even more restricted nonterminal Factor to make sure no additions can appear as children (without using parentheses). This gives multiplication higher priority than addition.

Real-world example: The Java expression grammar

```
Expression -> LambdaExpression | AssignmentExpression
AssignmentExpression -> ConditionalExpression | Assignment
ConditionalExpression -> ...
AdditiveExpression ->
    MultiplicativeExpression
    | AdditiveExpression + MultiplicativeExpression
    | AdditiveExpression - MultiplicativeExpression
MultiplicativeExpression ->
    UnaryExpression
    | MultiplicativeExpression * UnaryExpression
    | ...
UnaryExpression -> ...
Primary -> PrimaryNoNewArray | ArrayCreationExpression
PrimaryNoNewArray -> Literal | this | (Expression )| FieldAccess ...
More than 15 priority levels.
See the Java Language Specification, Java SE 8, Chapter 19, Syntax http://docs.oracle.com/javase/specs/jls/se8/html/jls-19.html

\section*{The "dangling else" problem}
\[
\begin{aligned}
& \text { S -> "if" "(" E ")" S ["else" S] } \\
& \text { S -> ID "=" E ";" } \\
& \text { E -> ID }
\end{aligned}
\]


\section*{Solutions to the "dangling else" problem}

\section*{Rewrite to equivalent unambiguous grammar}
- possible, but results in more complex grammar (several similar rules)

Use the ambiguous grammar
- use "rule priority", the parser can select the correct rule.
- works for the dangling else problem, but not for ambiguous grammars in general
- not all parser generators support it well

Change the language
- e.g., add a keyword "fi" that closes the "if"-statement
- restrict the "then" part to be a block: "\{ ... \}".
- only an option if you are designing the language yourself.

The Java Language Specification rewrites the grammar to be unambiguous.

\section*{Finding ambiguities in practice}

\section*{You try to run a CFG through an LL or LR parser generator}
- If it is accepted by the parser generator, the grammar is unambiguous
- If not, the grammar could be ambiguous, or unambiguous, but outside of the parser generator grammar class. In any case, you need to analyze that particular problem. This can be quite tricky, especially for large grammars. Perhaps you can find an ambiguity, or some other known LL/LR difficulty.

\section*{EBNF, BNF, Canonical form}

\section*{Recall: different notations for CFGs}
```

A -> B d e C f
A >> g A

```
C \(\rightarrow\) D a b \| b E F \| a C

G -> H* i \| (d E) \(+\mathrm{F} \mid[\mathrm{d} \mathrm{C}]\)

BNF (Backus-Naur Form)
- alternative productions (... | ... \| ...)

Canonical form
- sequence of terminals and nonterminals

EBNF (Extended Backus-Naur Form)
- repetition (* and +)
- optionals [...]
- parentheses (...)

\section*{Writing the grammar in different notations}



Use alternatives instead of several productions per nonterminal.

Equivalent EBNF (Extended BNF):

Use repetition instead of recursion, where possible.

\section*{Writing the grammar in different notations}
```

Canonical form:
Expr -> Expr "+" Term
Expr -> Term
Term -> Term "*" Factor
Term -> Factor
Factor -> INT
Factor -> "(" Expr ")"

```
```

Equivalent BNF (Backus-Naur Form):
Expr -> Expr "+" Term | Term
Term -> Term "*" Factor | Factor
Factor -> INT | "(" Expr ")"

```

Use alternatives instead of several productions per nonterminal.
```

Equivalent EBNF (Extended BNF):
Expr -> Term ("+" Term)*
Term -> Factor ("*" Factor)*
Factor -> INT | "(" Expr ")"

```

Use repetition instead of recursion, where possible.

\section*{Translating EBNF to Canonical form}

EBNF

Top level repetition \(X \rightarrow \gamma_{1} \gamma_{2} * \gamma_{3}\)

Top level alternative \(X->\gamma_{1} \mid \gamma_{2}\)
\[
\begin{aligned}
& \text { Top level parentheses } \\
& \mathrm{X}->\gamma_{1}(\ldots) \gamma_{2}
\end{aligned}
\]

Where \(\gamma_{k}\) is a sequence of terminals and nonterminals

\section*{Translating EBNF to Canonical form}

EBNF

Top level repetition
\(X \rightarrow \gamma_{1} \gamma_{2} * \gamma_{3}\)
\[
\begin{aligned}
& X->\gamma_{1} N \gamma_{3} \\
& N->\varepsilon \\
& N->\gamma_{2} N
\end{aligned}
\]
\[
\begin{aligned}
& X->\gamma_{1} \\
& X->\gamma_{2}
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{X}->\gamma_{1} \mathrm{~N} \gamma_{2} \\
& \mathrm{~N}->\ldots
\end{aligned}
\]

\section*{Exercise: \\ Translate from EBNF to Canonical form}
```

EBNF:
Expr -> Term ("+" Term)*

```

Equivalent Canonical Form

\section*{Solution: \\ Translate from EBNF to Canonical form}
```

EBNF:
Expr -> Term ("+" Term)*

```
```

Equivalent Canonical Form
Expr -> Term N
N -> \varepsilon
N -> "+" Term N

```

\section*{Can we prove that these are equivalent?}


\section*{Example proof}
1. We start with this:

Expr -> Term ("+" Term)*
2. We can move the repetition:

Expr -> (Term "+")* Term

> 3. Eliminate the repetition:
> Expr \(->\) N Term
> \(\mathrm{N}->\varepsilon\)
> \(\mathrm{N} \rightarrow \mathrm{N}\) Term "+"
4. Replace \(N\) Term by Expr in the third production:
Expr -> N Term
\(N->\varepsilon\)
N -> Expr "+"

We would like this:
Expr -> Expr "+" Term
Expr -> Term
```

5. Eliminate N:
Expr -> Expr "+" Term
Expr -> Term
```

Done!

\section*{Equivalence of grammars}

\section*{Given two context-free grammars, G1 and G2.}

Are they equivalent?
I.e., is \(L(G 1)=L(G 2)\) ?

Undecidable problem:
a general algorithm cannot be constructed.

We need to rely on our ingenuity to find out.
(In the general case.)

\section*{Adapting grammars to LL parsing}

\section*{Create equivalent LL grammar}


\footnotetext{
Typically, need to eliminate Left Recursion and Common Prefixes. (But this may not be enough.)
The parse trees will be different from the original desired ones.
Try to build the desired ASTs anyway.
EBNF helps: relatively easy to build the desired AST.
}

\section*{Recall: LL(1) parsing}

Assign

```

Assign -> ID = Exp ;
Exp -> Name Params | Name | ...
Name -> ID (. ID)*

```

\author{
Common prefix! \\ Cannot be handled by LL(1). \\ This grammar is not even \(\operatorname{LL}(\mathrm{k})\).
}

\title{
Eliminating the common prefix \\ Rewrite to an equivalent grammar without the common prefix
}
```

Exp -> Name Params | Name

```

With common prefix - not LL(1)

\title{
Eliminating the common prefix \\ Rewrite to an equivalent grammar without the common prefix
}
```

Exp -> Name Params | Name

```

With common prefix - not LL(1)

\section*{Exp -> Name OptParams OptParams -> Params \| \(\varepsilon\)}

Without common prefix - LL(1)

Eliminating a common prefix this way is called left factoring.

\section*{Exercise}

If two productions of the same nonterminal can derive a sentence starting in the same way, they share a common prefix.
```

A -> s B
A -> s C
B -> t
C -> u

```
```

A >> B s
A -> B t
B -> u v

```
```

A -> s B
B -> s C
B -> t C
C -> u

```

Which nonterminals have common prefix productions? What is the common prefix? Is the grammar \(\operatorname{LL}(1), \mathrm{LL}(2), \ldots\) ?

\section*{Solution}

If two productions of a nonterminal can derive a sentence starting in the same way, they share a common prefix.
```

B >> t
C -> u

```
A -> s B \(\quad\) A has two rules that can derive the prefix s
A -> s C The grammar is LL(2)
A -> B s A has two rules that can derive the prefix \(u v\)
\(A \rightarrow B t \quad\) The grammar is LL(3)
B -> u v
```

A -> s B This is not a common prefix problem. The two
B -> s C rules that start the same cannot be derived from
B -> t C the same nonterminal.
C -> u
The grammar is $\mathrm{LL}(1)$

```

Which nonterminals have common prefix productions? What is the common prefix? Is the grammar \(\operatorname{LL}(1), \mathrm{LL}(2), \ldots\) ?

\section*{The common prefix can be indirect}
```

A -> B
A has two rules that can derive the prefix t
The grammar is LL(2)
A -> C
A -> D
B -> t s
C-> t v
D -> x

$A \rightarrow B$	A has two rules that can derive the prefix $\mathrm{v} \mathrm{u}^{*}$
$A \rightarrow B t$	So, the prefix can become arbitrarily long.
$B \rightarrow B u$	The grammar is not $\mathrm{LL}(k)$, no matter what k we use.
B -> v	We need to rewrite the grammar, or use another parsing method

```

Which nonterminals have common prefix productions?
What is the common prefix?
Is the grammar \(\mathrm{LL}(1), \mathrm{LL}(2), \ldots\) ?

\section*{Eliminating the common prefix}

Rewrite to an equivalent grammar without the common prefix
\[
\begin{aligned}
& A->B \\
& A->C \\
& B->t s \\
& B->x D \\
& B->y \\
& C->t v \\
& D->B C
\end{aligned}
\]

Indirect
common
prefix

\section*{Eliminating the common prefix}

Rewrite to an equivalent grammar without the common prefix
\begin{tabular}{|l|l|}
\hline\(A->B\) \\
\(A->C\) \\
\(B->t ~ s\) \\
\(B->x D\) \\
\(B->y\) \\
\(C->t v\) \\
\(D->B C\) \\
\hline
\end{tabular}

Indirect common prefix

First, make the common prefix directly visible:

Substitute all B right-hand sides into the A -> B rule

We can't remove the \(B\) rules since \(B\) is used in other places.

Similarly for the A -> C rule


Direct common prefix

Then, eliminate the direct common prefix, as previously.

\section*{Left recursion}
assign

\[
\begin{aligned}
& \text { assign -> ID "=" expr ";" } \\
& \text { expr -> expr "+" term | term } \\
& \text { term -> ID }
\end{aligned}
\]
? What node should be built?
\(I D=I D+I D+I D ;\)
\(\uparrow\)
The grammar is left recursive.
The grammar is not \(\mathrm{LL}(\mathrm{k})\).
An LL parser would go into endless recursion.
(LR parsers can handle left recursion.)

\section*{Dealing with left recursion in LL parsers}

\section*{Method 1: Eliminate the left recursion (A bit cumbersome)}

Left-recursive grammar. Not LL(k)
\[
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E} \text { "+" T } \\
& \mathrm{E}->\mathrm{T} \\
& \mathrm{~T}->\text { ID }
\end{aligned}
\]

Rewrite to right-recursion! But there is now a common prefix! Still not LL(k).
\[
\begin{aligned}
& E->T \text { "+" E } \\
& E->T \\
& T->\text { ID }
\end{aligned}
\]

Eliminate the common prefix.
The grammar is now \(\operatorname{LL}(1)\)
\[
\begin{aligned}
& \text { E -> T E' } \\
& \text { E' }^{\prime} \text {-> "+" E } \\
& \mathrm{E}^{\prime}->\varepsilon \\
& \text { T -> ID }
\end{aligned}
\]

With a little work, it is possible to write code that builds a left-recursive AST, even if the parse is right-recursive.

\section*{Dealing with left recursion in LL parsers}

\section*{Method 2: Rewrite to EBNF (Easy!)}

Left-recursive grammar. Not
\[
\begin{array}{|l|}
\hline \text { E -> E "+" T } \\
\text { E -> T } \\
\text { T -> ID } \\
\hline
\end{array}
\]

Rewrite to EBNF!
\[
\begin{array}{|l|}
\hline \mathrm{E}->\mathrm{T}\left({ }^{\prime \prime}+{ }^{\prime} \mathrm{T}\right)^{*} \\
\mathrm{~T} \text {-> ID }
\end{array}
\]

A left-recursive AST can easily be built during the iteration.

\section*{Advice when using an LL-based parser generator}

If the LL parser generator does not accept your grammar, the reason might be
- Ambiguity - usually eliminate it. In some cases, rule priority can be used.
- Left recursion - can you use EBNF instead? Otherwise, eliminate.
- Common prefix - is it limited? You can then use a local lookahead, for example 2. Otherwise, factor out the common prefix.

You might be able to solve the problem, but the grammar might become large and less readable.

\section*{Different parsing algorithms}


\section*{LL: \\ Left-to-right scan \\ Leftmost derivation \\ Builds tree top-down Simple to understand}

\section*{\(\operatorname{LL}(k)\) vs \(\operatorname{LR}(k)\)}
\begin{tabular}{|c|c|c|}
\hline & LL(k) & LR(k) \\
\hline Parses input & \multicolumn{2}{|r|}{Left-to-right} \\
\hline Derivation & Leftmost & Rightmost \\
\hline Lookahead & \multicolumn{2}{|r|}{\(k\) symbols} \\
\hline Build the tree & top down & bottom up \\
\hline Select rule & after seeing its first \(k\) tokens & after seeing all its tokens, and an additional \(k\) tokens \\
\hline Left recursion & Cannot handle & Can handle! \\
\hline Unlimited common prefix & Cannot handle & Can handle! \\
\hline Can resolve some ambiguities through rule priority & Dangling else & Dangling else, associativity, priority \\
\hline Error recovery & Trial-and-error & Good algorithms exist \\
\hline Implement by hand? & Possible. But better to use a generator. & Too complicated. Use a generator. \\
\hline
\end{tabular}

\section*{Summary questions}
- What does it mean for a grammar to be ambiguous?
- What does it mean for two grammars to be equivalent?
- Exemplify some common kinds of ambiguities.
- Exemplify how expression grammars with can be disambiguated.
- What is the "dangling else"-problem, and how can it be solved?
- When should we use canonical form, and when BNF or EBNF?
- Translate an example EBNF grammar to canonical form.
- Can we write an algorithm to check if two grammars are equivalent?
- What is a "common prefix"?
- Exemplify how a common prefix can be eliminated.
- What is "left factoring"?
- What is "left recursion"?
- Exemplify how left recursion can be eliminated in a grammar on canonical form.
- Exemplify how left recursion can be eliminated using EBNF.
- Can \(\operatorname{LL}(k)\) parsing algorithms handle common prefixes and left recursion?
- Can \(\operatorname{LR}(k)\) parsing algorithms handle common prefixes and left recursion?```

