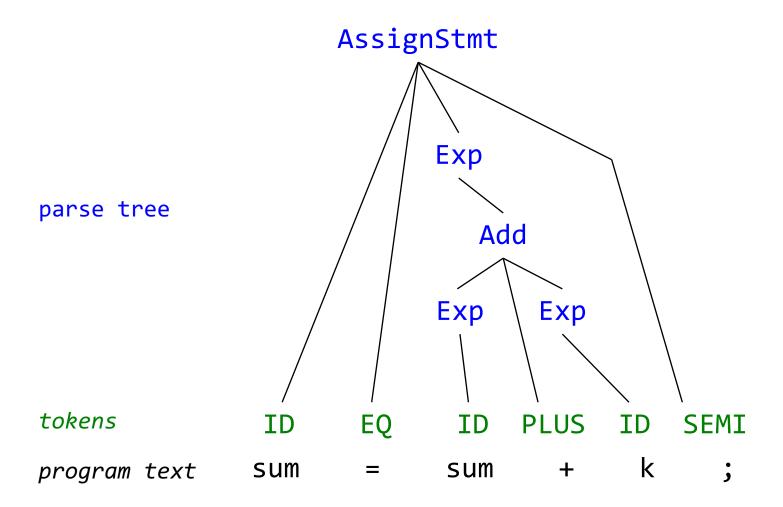
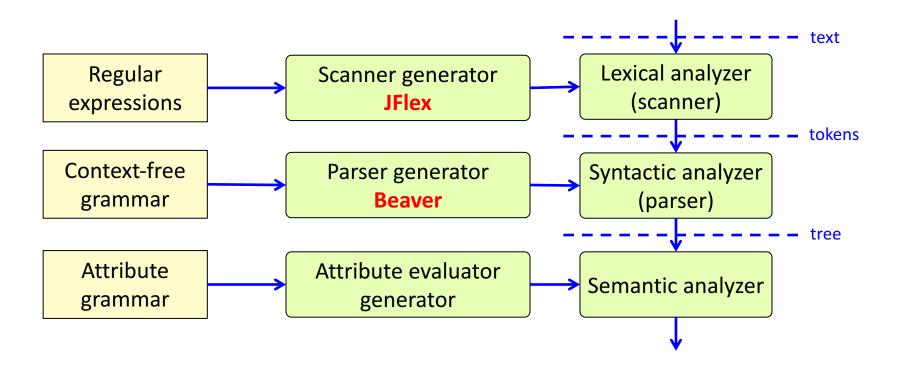

EDAN65: Compilers, Lecture 03

Context-free grammars, introduction to parsing


Görel Hedin

Revised: 2017-09-04


Course overview

Analyzing program text

Recall: Generating the compiler:

We will use a parser generator called **Beaver**

Context-Free Grammars

Regular Expressions vs Context-Free Grammars

Example REs:

```
WHILE = "while"

ID = [a-z][a-z0-9]*

LPAR = "("

RPAR = ")"

PLUS = "+"

...
```

Example CFG:

```
Stmt -> WhileStmt
Stmt -> AssignStmt
WhileStmt -> WHILE LPAR Exp RPAR Stmt
Exp -> ID
Exp -> Exp PLUS Exp
...
```

An RE can have iteration

A CFG can also have recursion

(it is possible to derive a symbol, e.g., Stmt, from itself)

Elements of a Context-Free Grammar

Example CFG:

```
Stmt -> WhileStmt
Stmt -> AssignStmt
WhileStmt -> WHILE LPAR Exp RPAR Stmt
AssignStmt -> ID EQ Exp SEMIC
...
```

Production rules:

$$X \rightarrow S_1 S_2 \dots S_n$$

where s_k is a *symbol* (terminal or nonterminal)

Nonterminal symbols

Terminal symbols (tokens)

Start symbol

(one of the nonterminals, usually the left-hand side of the first production)

Shorthand for alternatives

```
Stmt -> WhileStmt | AssignStmt
```

is equivalent to

```
Stmt -> WhileStmt
Stmt -> AssignStmt
```

Shorthand for repetition

Stmt*

is equivalent to

StmtList

where

StmtList $\rightarrow \epsilon$ | Stmt StmtList

Exercise

Construct a grammar covering this program and similar ones:

```
Example program:
while (k <= n) {sum = sum + k; k = k+1;}</pre>
```

```
CFG:
Stmt -> WhileStmt | AssignStmt | CompoundStmt
WhileStmt -> "while" "(" Exp ")" Stmt
AssignStmt -> ID "=" Exp ";"
CompoundStmt -> ...
Exp -> ...
LessEq -> ...
Add -> ...
```

(Often, simple tokens are written directly as text strings)

Solution

Construct a grammar covering this program and similar ones:

```
Example program:
while (k <= n) {sum = sum + k; k = k+1;}</pre>
```

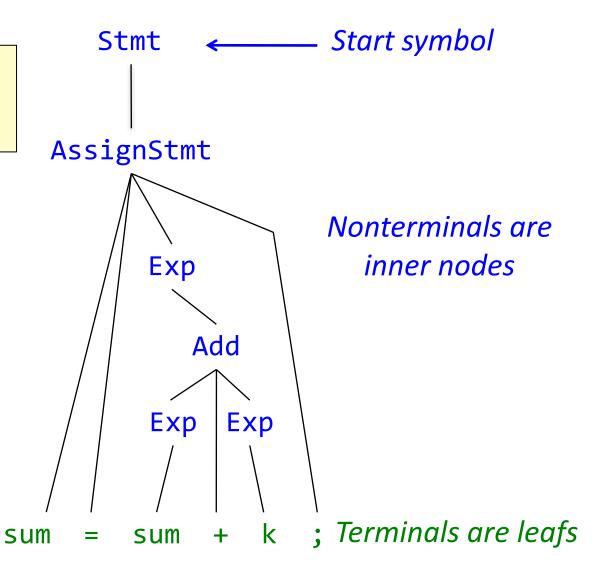
```
CFG:
Stmt -> WhileStmt | AssignStmt | CompoundStmt
WhileStmt -> "while" "(" Exp ")" Stmt
AssignStmt -> ID "=" Exp ";"
CompoundStmt -> "{" Stmt* "}"
Exp -> LessEq | Add | ID | INT
LessEq -> Exp "<=" Exp
Add -> Exp "+" Exp
```

Parsing

Use the grammar to derive a tree for a program:

Example program:

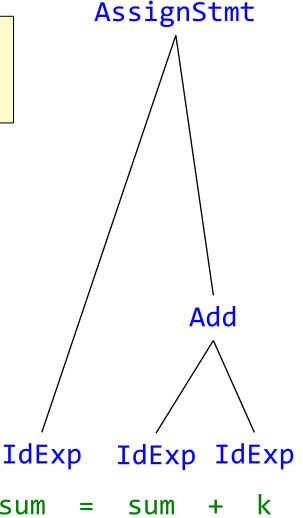
sum = sum + k;


Parse tree

Use the grammar to derive a parse tree for a program:

Example program:

sum = sum + k;


A parse tree includes *all* the tokens as leafs.

Corresponding abstract syntax tree

(will be discussed in later lecture)

Example program: sum = sum + k;

An abstract syntax tree is similar to a parse tree, but simpler.

It does not include all the tokens.

sum

EBNF vs Canonical Form

EBNF:

```
Stmt -> AssignStmt | CompoundStmt
AssignStmt -> ID "=" Exp ";"
CompoundStmt -> "{" Stmt* "}"
Exp -> Add | ID
Add -> Exp "+" Exp
```

(Extended) Backus-Naur Form:

- Compact, easy to read and write
- EBNF has alternatives, repetition, optionals, parentheses (like REs)
- Common notation for practical use

Canonical form:

```
Stmt -> ID "=" Exp ";"
Stmt -> "{" Stmts "}"
Stmts -> ε
Stmts -> Stmt Stmts
Exp -> Exp "+" Exp
Exp -> ID
```

Canonical form:

- Core formalism for CFGs
- Useful for proving properties and explaining algorithms

Real world example: The Java Language Specification

```
CompilationUnit:
    [PackageDeclaration] {ImportDeclaration} {TypeDeclaration}

PackageDeclaration:
    {PackageModifier} package Identifier {. Identifier};

PackageModifier:
    Annotation
...
```

See http://docs.oracle.com/javase/specs/jls/se8/html/index.html

- See Chapter 2 about the Java grammar notation.
- Look at some other chapters to see other syntax examples.

Formal definition of CFGs

Formal definition of CFGs (canonical form)

```
A context-free grammar G = (N, T, P, S), where N - \text{the set of nonterminal symbols}
T - \text{the set of terminal symbols}
P - \text{the set of production rules, each with the form}
X -> Y_1 Y_2 ... Y_n
where X \subseteq N, n \ge 0, and Y_k \subseteq N \cup T
S - \text{the start symbol (one of the nonterminals). I.e., } S \subseteq N
```

So, the *left-hand side* X of a rule is a nonterminal.

And the *right-hand side* $Y_1 Y_2 ... Y_n$ is a sequence of nonterminals and terminals.

If the rhs for a production is empty, i.e., n = 0, we write $X \rightarrow \varepsilon$

A grammar G defines a language L(G)

```
A context-free grammar G = (N, T, P, S), where N - the set of nonterminal symbols T - the set of terminal symbols P - the set of production rules, each with the form X -> Y_1 Y_2 ... Y_n where X \subseteq N, n \ge 0, and Y_k \subseteq N \cup T S - the start symbol (one of the nonterminals). I.e., S \subseteq N
```

G defines a language L(G) over the alphabet T

T* is the set of all possible sequences of T symbols.

L(G) is the subset of T* that can be derived from the start symbol S, by following the production rules P.

Exercise

```
G = (N, T, P, S)
P = {
  Stmt -> ID "=" Exp ";",
  Stmt -> "{" Stmts "}" ,
  Stmts \rightarrow \epsilon,
  Stmts -> Stmt Stmts ,
  Exp -> Exp "+" Exp ,
  Exp -> ID
N = {
T = {
S =
```

```
L(G) = \{
```

Solution

```
G = (N, T, P, S)
P = {
  Stmt -> ID "=" Exp ";",
  Stmt -> "{" Stmts "}" ,
  Stmts \rightarrow \epsilon,
  Stmts -> Stmt Stmts ,
  Exp \rightarrow Exp "+" Exp ,
  Exp -> ID
N = {Stmt, Exp, Stmts}
T = \{ID, "=", "\{", "\}", ";", "+"\}
S = Stmt
```

```
L(G) = \{
 "{" "{" "}" "}",
 ID "=" ID ";",
 "{" ID "=" ID ";" "}",
 ID "=" ID "+" ID ";"
 "{" ID "=" ID "+" ID ";" "}",
 ID "=" ID "+" ID "+" ID ";",
```

The sequences in L(G) are usually called *sentences* or *strings*

Derivations

Derivation step

If we have a sequence of terminals and nonterminals, e.g.,

we can replace one of the nonterminals, applying a production rule. This is called a *derivation step*.

(Swedish: Härledningssteg)

Suppose there is a production

$$Y \rightarrow X$$
 a

and we apply it for the first Y in the sequence. We write the derivation step as follows:

$$X a Y Y b => X a X a Y b$$

Derivation

A *derivation*, is simply a sequence of derivation steps, e.g.:

$$\gamma_0 => \gamma_1 => ... => \gamma_n$$
 (n \ge 0)

where each γ_i is a sequence of terminals and nonterminals

If there is a derivation from γ_0 to γ_n , we can write this as

$$\gamma_0 = > * \gamma_n$$

So this means it is possible to get from the sequence γ_0 to the sequence γ_n by following the production rules.

Definition of the language L(G)

Recall that:

```
G = (N, T, P, S)
```

T* is the set of all possible sequences of T symbols.

L(G) is the subset of T* that can be derived from the start symbol S, by following the production rules P.

Using the concept of derivations, we can formally define L(G) as follows:

$$L(G) = \{ w \in T^* \mid S =>^* w \}$$

Exercise:

Prove that a sentence belongs to a language

Prove that

INT + INT * INT

belongs to the language of the following grammar:

 p_1 : Exp \rightarrow Exp "+" Exp

p₂: Exp -> Exp "*" Exp

 p_3 : Exp \rightarrow INT

Proof (by showing all the derivation steps from the start symbol Exp):

Exp

=>

Solution:

Prove that a sentence belongs to a language

Prove that

INT + INT * INT

belongs to the language of the following grammar:

```
p_1: Exp \rightarrow Exp "+" Exp
```

 p_3 : Exp \rightarrow INT

Proof:

(by showing all the derivation steps from the start symbol Exp)

Exp

```
=><sup>p1</sup> Exp "+" Exp
```

Leftmost and rightmost derivations

In a *leftmost* derivation, the leftmost nonterminal is replaced in each derivation step, e.g.,:

```
Exp =>
Exp "+" Exp =>
INT "+" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT
```

In a *rightmost* derivation, the rightmost nonterminal is replaced in each derivation step, e.g.,:

```
Exp =>
Exp "+" Exp =>
Exp "+" Exp "*" Exp =>
Exp "+" Exp "*" INT =>
Exp "+" INT "*" INT =>
INT "+" INT "*" INT
```

LL parsing algorithms use leftmost derivation.

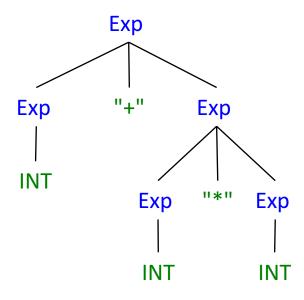
LR parsing algorithms use rightmost derivation.

Will be discussed in later lectures.

A derivation corresponds to building a parse tree

Grammar: Exp -> Exp "+" Exp Exp -> Exp "*" Exp Exp -> INT

Exercise: build the parse tree (also called derivation tree).


```
Exp =>
Exp "+" Exp =>
INT "+" Exp =>
INT "+" Exp "*" Exp =>
INT "+" INT "*" Exp =>
INT "+" INT "*" INT
```

A derivation corresponds to building a parse tree

Grammar: Exp -> Exp "+" Exp Exp -> Exp "*" Exp Exp -> INT

Exp => Exp "+" Exp => INT "+" Exp => INT "+" Exp "*" Exp => INT "+" INT "*" Exp => INT "+" INT "*" INT

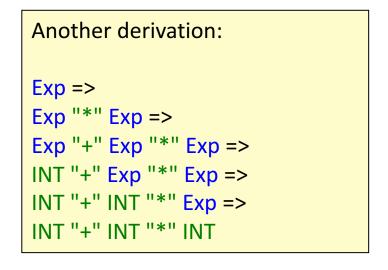
Parse tree (derivation tree):

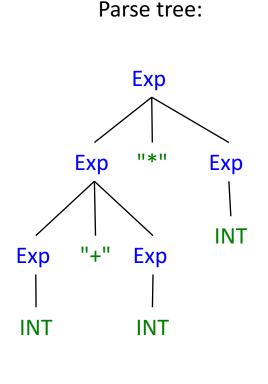
Ambiguities

Exercise:

Can we do another derivation of the same sentence, that gives a different parse tree?

Grammar: Exp -> Exp "+" Exp Exp -> Exp "*" Exp Exp -> INT


Parse tree:


Another derivation:

Solution:

Can we do another derivation of the same sentence, that gives a different parse tree?

Grammar: Exp -> Exp "+" Exp Exp -> Exp "*" Exp Exp -> INT

Which parse tree would we prefer?

Ambiguous context-free grammars

A CFG is *ambiguous* if a sentence in the language can be derived by two (or more) *different* parse trees.

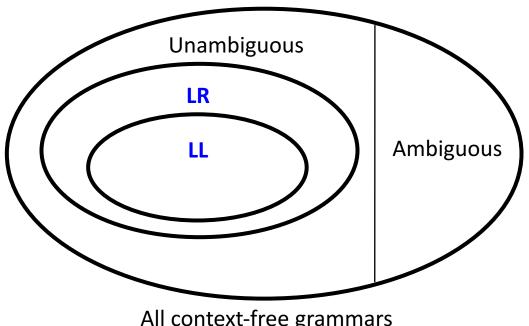
A CFG is *unambiguous* if each sentence in the language can be derived by only *one* parse tree.

(Swedish: tvetydig, otvetydig)

Note! There can be many different derivations that give the same parse tree.

How can we know if a CFG is ambiguous?

If we find an example of an ambiguity, we know the grammar is ambiguous.

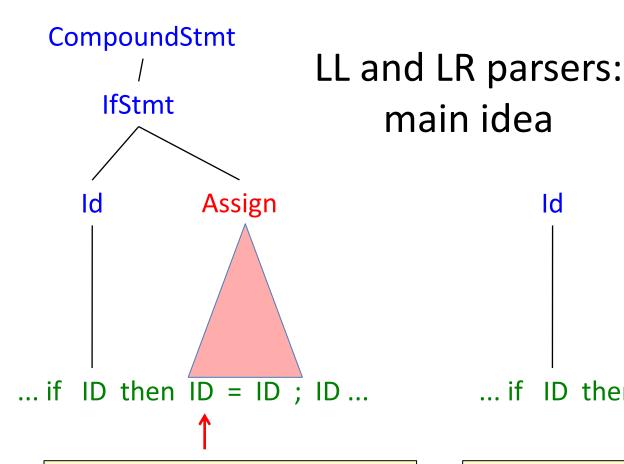

There are algorithms for deciding if a CFG belongs to certain subsets of CFGs, e.g. LL, LR, etc. (See later lectures.) These grammars are unambiguous.

But in the general case, the problem is *undecidable*: it is not possible to construct a general algorithm that decides ambiguity for an arbitrary CFG.

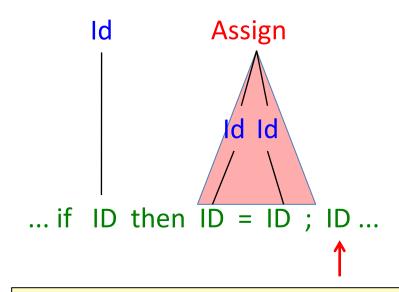
Strategies for eliminating ambiguities, next lecture.

Parsing

Different parsing algorithms


All context-free grammars

LL:


Left-to-right scan Leftmost derivation Builds tree top-down Simple to understand

LR:

Left-to-right scan **Rightmost derivation** Builds tree bottom-up More powerful

LL(1): decides to build Assign after seeing the first token of its subtree. The tree is built top down.

LR(1): decides to build Assign after seeing the first token following its subtree.

The tree is built bottom up.

The token is called lookahead. LL(k) and LR(k) use k lookahead tokens.

Recursive-descent parsing

A way of programming an LL(1) parser by recursive method calls

Assume a BNF grammar with exactly *one* production rule for each nonterminal. (Can easily be generalized to EBNF.)

Each production rule RHS is either

- 1. a sequence of token/nonterminal symbols, or
- 2. a set of nonterminal symbol alternatives

For each nonterminal, a method is constructed. The method

- 1. matches tokens and calls nonterminal methods, or
- 2. calls one of the nonterminal methods which one depends on the lookahead token.

If the lookahead token does not match, a parsing error is reported.

Example Java implementation: overview

```
statement -> assignment | compoundStmt
assignment-> ID ASSIGN expr SEMICOLON
compoundStmt -> LBRACE statement* RBRACE
...
```

```
class Parser {
                            // current lookahead token
private int token;
void accept(int t) {...}
// accept t and read in next token
void error(String str) {...} // generate error message
void statement() {...}
void assignment () {...}
void compoundStmt () {...}
```

Example: recursive descent methods

```
statement -> assignment | compoundStmt assignment-> ID ASSIGN expr SEMICOLON compoundStmt -> LBRACE statement* RBRACE
```

```
class Parser {
 void statement() {
  switch(token) {
   case ID: assignment(); break;
   case LBRACE: compoundStmt(); break;
   default: error("Expecting statement, found: " + token);
 void assignment() {
  accept(ID); accept(ASSIGN); expr(); accept(SEMICOLON);
 void compoundStmt() {
  accept(LBRACE);
  while (token!=RBRACE) { statement(); }
  accept(RBRACE);
```

Example: Parser skeleton details

```
statement -> assignment | compoundStmt
assignment-> ID ASSIGN expr SEMICOLON
compoundStmt -> LBRACE statement* RBRACE
expr -> ...
```

```
class Parser {
 final static int ID=1, WHILE=2, DO=3, ASSIGN=4, ...;
                             // current lookahead token
 private int token;
 void accept(int t) {
                             // accept t and read in next token
  if (token==t) {
  token = nextToken();
  } else {
   error("Expected " + t + " , but found " + token);
 void error(String str) {...} // generate error message
 private int nextToken() {...} // read next token from scanner
 void statement() ...
```

Are these grammars LL(1)?

Common prefix

Left recursion

What would happen in a recursive-descent parser?

Could they be LL(2)? LL(k)?

Dealing with common prefix of limited length:

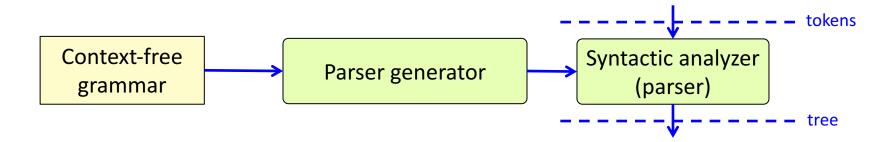
Local lookahead

LL(2) grammar:

statement -> assignment | compoundStmt | callStmt assignment-> ID ASSIGN expr SEMICOLON compoundStmt -> LBRACE statement* RBRACE callStmt -> ID LPAR expr RPAR SEMICOLON

void statement()	

Dealing with common prefix of limited length:


Local lookahead

```
LL(2) grammar:

statement -> assignment | compoundStmt | callStmt
assignment-> ID ASSIGN expr SEMICOLON
compoundStmt -> LBRACE statement* RBRACE
callStmt -> ID LPAR expr RPAR SEMICOLON
```

```
void statement() {
 switch(token) {
  case ID:
   if (lookahead(2) == ASSIGN) {
    assignment();
   } else {
    callStmt();
   break;
  case LBRACE: compoundStmt(); break;
  default: error("Expecting statement, found: " + token);
```

Generating the parser:

Beaver: an LR-based parser generator

Example beaver specification

```
%class "LangParser";
%package "lang";
%terminals LET, IN, END, ASSIGN, MUL, ID, NUMERAL;
%goal program; // The start symbol
// Context-free grammar
program = exp;
exp = factor | exp MUL factor;
factor = let | numeral | id;
let = LET id ASSIGN exp IN exp END;
numeral = NUMERAL;
id = ID;
```

Later on, we will extend this specification with semantic actions to build the syntax tree.

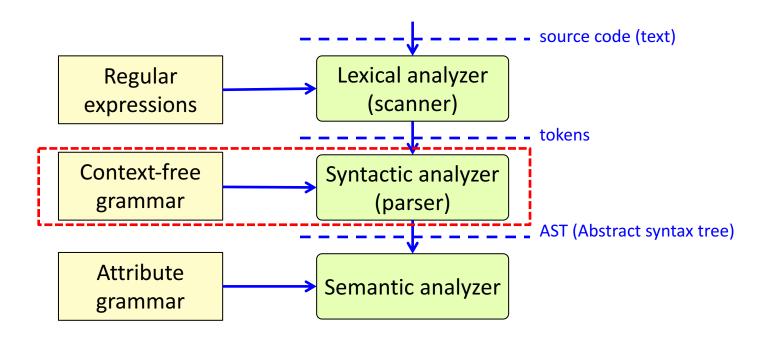
Regular Expressions vs Context-Free Grammars

	RE	CFG
Typical Alphabet	characters	terminal symbols (tokens)
Language is a set of	strings (char sequences)	sentences (token sequences)
Used for	tokens	parse trees
Power	iteration	recursion
Recognizer	DFA	DFA with stack

The Chomsky hierarchy of formal grammars

Grammar	Rule patterns	Type
regular	$X \rightarrow aY$ or $X \rightarrow a$ or $X \rightarrow \epsilon$	3
context free	X -> γ	2
context sensitive	$\alpha \times \beta \rightarrow \alpha \gamma \beta$	1
arbitrary	γ -> δ	0

a – terminal symbol


 α , β , γ , δ – *sequences* of (terminal or nonterminal) symbols

 $\mathsf{Type}(3) \subseteq \mathsf{Type}(2) \subseteq \mathsf{Type}(1) \subseteq \mathsf{Type}(0)$

Regular grammars have the same power as regular expressions (tail recursion = iteration).

Type 2 and 3 are of practical use in compiler construction. Type 0 and 1 are only of theoretical interest.

Course overview

What we have covered:

Context-free grammars, derivations, parse trees Ambiguous grammars Introduction to parsing, recursive-descent

You can now finish assignment 1

Summary questions

- Construct a CFG for a simple part of a programming language.
- What is a nonterminal symbol? A terminal symbol? A production? A start symbol? A parse tree?
- What is a left-hand side of a production? A right-hand side?
- Given a grammar G, what is meant by the language L(G)?
- What is a derivation step? A derivation? A leftmost derivation? A righmost derivation?
- How does a derivation correspond to a parse tree?
- What does it mean for a grammar to be ambiguous? Unambiguous?
- Give an example an ambiguous CFG.
- What is the difference between an LL and an LR parser?
- What is the difference between LL(1) and LL(2)? Or between LR(1) and LR(2)?
- Construct a recursive descent parser for a simple language.
- Give typical examples of grammars that cannot be handled by a recursivedescent parser.
- Explain why context-free grammars are more powerful than regular expressions.
- In what sense are context-free grammars "context-free"?