
EDAN65:	Compilers

Introduction and	Overview

Görel	Hedin
Revised:	2017-08-27

Course	registration

• Confirm by	signing the	Registration Form

• Prerequisites
– Object-oriented programming and	Java
– Algorithms and	data	structures
(recursion,	trees,	lists,	hash tables,	…)

2EDAN65,	Lecture	01

Student	representatives

• 2	students
• Participate in	post	course CEQ	discussion
(Course	Experience Questionnaire)

3EDAN65,	Lecture	01

Course	information
• Web	site:	http://cs.lth.se/edan65

– read	the	Week	by	Week	page	to	find	out	what	to	do	each	week.
– Lecture	notes,	articles	to	read,	assignments,	exercises
– Material	added	continuously	during	the	course
– No	handouts	– print	yourself	if	you	want	it	on	paper

• Textbook
– A.	W.	Appel,	Jens	Palsberg:	Modern	Compiler Implementation	in	Java,	

2nd	Edition,	Cambridge	University	Press,	2002,	ISBN:	0-521-82060-X
– Available as	an	on-line	e-book through Lund	University
– Only part	of the	book is	used.	Covers	only part	of the	course.

• Forum	(Questions&Answers)	using the	Piazza	system.

• Quizzes using the	Moodle system.

4EDAN65,	Lecture	01

Course	structure
• 14	lectures,	Mon	13-15,	Tue 10-12	(hopefully	1-2	guest	lectures)
• Assignment 0,	for	freshing up on	Java	and	Unix,	and	understanding	build	

system	Gradle.	Do	on	your own.
• Assignment 1-6.	Mandatory.

– Work in	pairs.	Use the	lecture break	or	the	forum	to form	pairs.
– Heavy.	Get	approved and	get	help at	Lab	sessions.
– Thu	13-15,	Thu	15-17,	or	Fri	10-12.	Sign	up by	Thursday Aug	31
– Lab	sessions	start	next week (but start	this week on	your work)
– Assignments prerequisite for	doing exam

• Lecture quizzes
– Do	on	your own.	Not	mandatory,	but	highly	recommended.

• Exercises
– Do	on	your own.	Not	mandatory,	but	highly	recommended.

• Exam – sign up in	advance through LTH	system
– Exam:	Wednesday,	Oct 25,	2017
– Re-exam:	January	2018,	exact	time	and	place	to	be	announced.

5EDAN65,	Lecture	01

More on	the	assignments
• Work together with your partner	on	all	parts

– pair	programming,	switch	frequently who is	typing
– you need hands-on	experience from	all	parts

• If	you get	stuck
– ask	on	the	Piazza	forum
– you are encouraged to give answers to other students	on	the	forum

(for	general	advice,	not	solutions)

• Both of you should be	able to explain all	parts	of your solution.
• Want to use a	git repo?	Make	it	private!	Free on	BitBucket.

6EDAN65,	Lecture	01

Estimated typical effort for	assignments

EDAN65,	Lecture	01 7

A0:	Unix,	Java,	Gradle 0-4	hours highly	recommended

A1:	Scanning 5	hours mandatory

A2: Parsing 15	hours mandatory

A3: Visitors,	aspects 12	hours mandatory

A4:	Semantic analysis 18	hours mandatory

A5:	Interpreter 15	hours mandatory

A6:	Code generator 12	hours mandatory

Instructors

• Lectures
– Prof.	Görel	Hedin

• Programming assignments and	lab sessions
– Ph.	D.	student	Jesper	Öqvist
– Ph.	D.	student	Alfred	Åkesson

8EDAN65,	Lecture	01

EDAN65,	Lecture	01 9

Why learn compiler construction?

• Very useful in	practice
– Languages are everywhere
– Your next project might need a	small	language
– A	compiler	exemplifies	the	major	techniques	used	for	any	
software	language	processing

• Interesting
– Compiler theory:	fundamental	to computer	science
– Essential for	understanding programming languages

EDAN65,	Lecture	01 10

A	traditional compiler

11

compilersource
code

assembly
code

EXAMPLE:

compiler
...
csum = a + b + 1;
...

.data
a: .long 0
b: .long 0
csum: .long 0

.code

...
movl a, %eax
addl b, %eax
addl $1, %eax
movl %eax, csum
...EDAN65,	Lecture	01

What happens after compilation?

12

compilersource
code

assembly
code

assembler object
code linker executable

code

library
object code

• object code contains global	symbols	
and	relocatable addresses

• in	executable code global	symbols	and	
relocatable addresses have been
replaced by	absolute	addresses

EDAN65,	Lecture	01

loader

machine

memory

stack

heap

code

static
data

objects

activation
records

...
0000 0001
0176 0024
0024 7050
2530 0000
0000 0010
2444 5512
0000 0010
...

What about Java?

13

EXAMPLE:

javac
compiler

...
csum = a + b + 1;
...

...
iload_1
iload_2
iadd
iconst_1
iadd
istore_3
...

javac
compilerA.java A.class

class file
(java	bytecode)

EDAN65,	Lecture	01

Running Java	code?

14

javac
compilerA.java A.class

machine

memory

stack

heap

code
and
data

objects

activation
records

java
VM

class loader

machine
code

JIT

optimized
machine
code

optimize

The	java program	contains a	java	virtual machine (jvm).
It	can:
• load bytecode to the	heap
• interpret	bytecode
• compile bytecode into machine code during execution

(JIT	– Just-In-Time Compilation)
• optimize the	machine code
• garbage collect the	heap

bytecode

load
and verify

EDAN65,	Lecture	01

A-object

Inside	the	compiler:

Semantic analysis

Intermediate
code generation

Optimization

Target	code
generation

15EDAN65,	Lecture	01

Each phase converts the	program	
from	one representation to another

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

target code

tokens

Attributed AST

intermediate code

source	code (text)

AST	(Abstract	syntax	tree)

intermediate code

Analysis

Synthesis

Front	and	back	end:

Semantic analysis

Intermediate
code generation

Optimization

Target	code
generation

16EDAN65,	Lecture	01

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

target code

tokens

Attributed AST

intermediate code

source	code (text)

AST	(Abstract	syntax	tree)

intermediate code

Front	end
(independent	on	target language)

Back	end
(independent	on	source	language)

Middle end
(independent	on	both)

C-Frontend

Several front	and	back	ends:

17EDAN65,	Lecture	01

Why?
• It	is	more rational to implement m	front	ends +	n	back	ends

than m	*	n	compilers.
• Many optimizations are best	performed on	intermediate code.
• It	may be	easier to debug the	front	end	using an	interpreter	

than a	target machine

intermediate code

L-Frontend ...

Intel-Backend MIPS-Backend Interpreter ...

javac

Example:

18EDAN65,	Lecture	01

Java	bytecode

Eclipse
Java	compiler Jython

HotSpot JVM Jikes
Research	VM dx ...

Scala	
compiler ...

Dalvik VM
(Android)

Dalvik bytecode

Some terminology
• A	compiler translates	a	high-level program	to low-level code.

• An	interpreter	is	software	that executes a	high/low level program,	often by	
calling one procedure for	each program	construct.

• In	the	context of compiler construction,	a	virtual machine (VM)	is	an	
interpreter	that executes low-level,	usually platform-independent	code.
(In	other contexts,	virtual machine can mean system	virtualization.)

• Platform-independent	low-level code,	designed to be	executed by	a	VM,	was
originally called p-code (portable	code),	but is	now usually called bytecode.

• An	interpreter	or	VM	may use a	JIT (“just	in	time”)	compiler to compile all	or	
parts	of the	program	into machine code during execution.

EDAN65,	Lecture	01 19

Some historical anecdotes
• The	first compiler was developed by	Grace	Hopper	in	1952.

• John	McCarthy	used JIT	compilation in	his LISP	interpreter	in	1960.	
This was called "Compile and	Go".	The	term	JIT	came later,	and	was
popularized with Java.

• The	Pascal-P	system,	developed by	Niklaus Wirth in	1972,	used
portable	code called "p-code".	The	interpreter	was easy to port	to
different	machines.	The	language spread quickly,	and	became a	
popular language taught at	many universities.

• Smalltalk-80	used bytecode,	and	pioneered several runtime
compilation and	optimization techniques for	object-oriented
languages.

EDAN65,	Lecture	01 20

Compiler phases and	program	representations:

Semantic analysis

Intermediate
code generation

Optimization

Target	code
generation

21EDAN65,	Lecture	01

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

target code

tokens

Attributed AST

intermediate code

source	code (text)

AST	(Abstract	syntax	tree)

intermediate code

Lexical analysis (scanning)

EDAN65,	Lecture	01 22

Source text Tokens

A	token is	a	symbolic name,	sometimes with an	attribute.
A	lexeme is	a	string	corresponding to a	token.

while (k<=n) {
sum=sum+k;
k=k+1;

}

WHILE LPAR ID(k) LEQ ID(n) RPAR LBRA
ID(sum) EQ ID(sum) PLUS ID(k) SEMI
ID(k) EQ ID(k) PLUS INT(1) SEMI
RBRA

Compiler phases and	program	representations:

Semantic analysis

Intermediate
code generation

Optimization

Target	code
generation

23EDAN65,	Lecture	01

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

target code

tokens

Attributed AST

intermediate code

source	code (text)

AST	(Abstract	syntax	tree)

intermediate code

Syntactic analysis (parsing)

EDAN65,	Lecture	01 24
while (k <= n) { sum = sum + k ; k = k + 1 ; }
WHILE LPAR ID LEQ ID RPAR LBRA ID EQ ID PLUS ID SEMI ID EQ ID PLUS INT SEMI RBRA

WhileStmt

CompoundStmt

AssignStmt AssignStmt

LessEqual Add Add

parse tree – spans	all	tokens

Abstract	syntax	tree (AST)

EDAN65,	Lecture	01 25
while (k <= n) { sum = sum + k ; k = k + 1 ; }
WHILE LPAR ID LEQ ID RPAR LBRA ID EQ ID PLUS ID SEMI ID EQ ID PLUS INT SEMI RBRA

WhileStmt

CompoundStmt

AssignStmt AssignStmt

LessEqual Add Add

AST	– a	tree with only the	
essential structure and	tokens

Abstract	syntax	trees

• Used inside	the	compiler for	representing the	program
• Very similar to the	parse tree,	but

– contains only essential tokens
– has	a	simpler more natural structure

• Often represented by	a	typed object-oriented model
– abstract	classes (Stmt,	Expr,	Decl,	...)
– concrete classes (WhileStmt,	IfStmt,	Add,	Sub,	...)

EDAN65,	Lecture	01 26

Designing	an	AST	model
(class hierarchy)

• What abstract	constructs are there in	the	language
– Make	them abstract	types

• What concrete constructs are there?
– Make	them subtypes

• What parts	do	the	concrete constructs have?
– Add getters	for	them,	so	the	AST	can be	traversed

EDAN65,	Lecture	01 27

Example AST	class hierarchy

EDAN65,	Lecture	01 28

Stmt

CompoundStmt

getStmts()

AssignStmt

getId()
getExpr()

Expr

Add

getExpr1()
getExpr2()

LessEqual

getExpr1()
getExpr2()

Id

getID()

Int

getINT()

WhileStmt

getExpr()
getStmt()

Compiler phases and	program	representations:

Semantic analysis

Intermediate
code generation

Optimization

Target	code
generation

29EDAN65,	Lecture	01

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

target code

tokens

Attributed AST

intermediate code

source	code (text)

AST	(Abstract	syntax	tree)

intermediate code

Semantic analysis

Analyze the	AST,	for	example,
• Which declaration corresponds to a	variable?
• What is	the	type of an	expression?
• Are there compile time errors in	the	program?

Analysis aided by	adding attributes to the	AST
(properties of AST	nodes)

EDAN65,	Lecture	01 30

Example attributes

EDAN65,	Lecture	01 31

Stmt

WhileStmt

getExpr()
getStmt()

CompoundStmt

getStmts()

AssignStmt

getId()
getExpr()

Expr

Add

getExpr1()
getExpr2()

LessEqual

getExpr1()
getExpr2()

Id

getID()
decl()

Int

getINT()

Decl

type()

Each Expr has	a	type()	attribute,	indicating if the	expression	is	integer,	boolean,	etc.
Each Id has	a	decl()	attribute,	referring to the	appropriate declaration node.

VarDecl

...

MethodDecl

...

Compiler phases and	program	representations:

Semantic analysis

Intermediate
code generation

Optimization

Target	code
generation

32EDAN65,	Lecture	01

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

target code

tokens

Attributed AST

intermediate code

source	code (text)

AST	(Abstract	syntax	tree)

intermediate code

Intermediate code generation

Intermediate code:
• independent	of source	language
• independent	of target machine
• usually assembly-like

– but simpler,	without many instruction variants
– and	with an	unlimited number of registers
(or	uses a	stack	instead of registers)

EDAN65,	Lecture	01 33

Compiler phases and	program	representations:

Semantic analysis

Intermediate
code generation

Optimization

Target	code
generation

34EDAN65,	Lecture	01

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

target code

tokens

Attributed AST

intermediate code

source	code (text)

AST	(Abstract	syntax	tree)

intermediate codeSee the	course Optimizing
Compilers,	EDAN75

Generating	the	compiler:

Semantic analyzer

Intermediate
code generator

Optimizer

Target	code
generator

35EDAN65,	Lecture	01

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions Scanner	generator

Context-free
grammar

Parser
generator

Attribute
grammar

Attribute evaluator
generator

Reusable
algoritms,
see EDAN75

Program	errors

Semantic analysis

Code generation

36EDAN65,	Lecture	01

Lexical analysis
(scanning)

Syntactic analysis
(parsing)

interpreter/
machine

lexical errors
text	that cannot be	interpreted as	a	token

syntactic errors
tokens	in	the	wrong order

static-semantic errors
wrong use of names,	types,	...

runtime errors
null pointer	exception,	
division	by	zero,
stack	overflow,	...

logic errors
Compute the	wrong result.
Not	caught by	the	compiler or	the	machine.
Normally try	to catch using test	cases.
Assertions and	program	verification can also help.

compile-time
errors

Example errors

EDAN65,	Lecture	01 37

int # square(int x) {
return x * x;

}

int double square(int x) {
return x * x;

}

boolean square(int x) {
return x * x;

}

int p(int x) {
return x / 0;

}

int square(int x) {
return 2 * x;

}

Lexical error:

Syntactic error:

Static-semantic error:

Runtime error:

Logic error:

Safe versus unsafe languages
• Safe language

All	runtime errors are caught by	the	generated code and/or	runtime system,	and	
are reported in	terms	of the	language.

Examples:	Java,	C#,	Smalltalk,	Python,	...

• Unsafe language

Runtime errors in	the	generated code can lead to undefined behavior,	for	example
an	out of bounds array access.	In	the	best	case,	this gives	a	hardware	exception
soon after the	real	error,	stopping the	program	("segmentation fault").	In	the	worst
case,	the	execution continues,	computing the	wrong result or	giving a	
segmentation fault much later,	leading	to bugs that can be	extremely hard	to find.

Examples:	C,	Assembly

EDAN65,	Lecture	01 38

Course	overview

Semantic analyzer

Intermediate
code generator

Optimizer

Target	code
generator

39EDAN65,	Lecture	01

Lexical analyzer
(scanner)

Syntactic analyzer
(parser)

Regular
expressions

Context-free
grammar

Attribute
grammar

machine

runtime system

stack

heap

code
and
data

objects

activation
records

Interpreter

target code

tokens

Attributed AST

intermediate code

source	code (text)

AST	(Abstract	syntax	tree)

intermediate code

garbage
collection

Virtual
machine

A1

A1,	A2

A3,	A4

A5

A6

After this course...
• You will have built a	complete compiler

• You will have seen new	declarative ways of programming

• You will have learnt some fundamental	computer	science	theory

• You will have experience from	using several practical	tools

• You might be	continue	with	a	compiler project in	the	EDAN70	course
(Project	in	Computer	Science)

• You might continue	with	a	master's thesis project in	compilers (related to
research	or	industry)	

EDAN65,	Lecture	01 40

Applications of compiler construction

• Traditional compilers from	source	to assembly

• Source-to-source	translators,	preprocessors

• Interpreters	and	virtual machines

• Integrated programming environments

• Analysis tools

• Refactoring tools

• Domain-specific languages

EDAN65,	Lecture	01 41

Examples of
Domain-Specific Languages

EDAN65,	Lecture	01 42

HTML

EDAN65,	Lecture	01 43

...
<h3>Lecture 1: Introduction. Mon 13-15. <a
href="http://fileadmin.cs.lth.se/cs/Education/EDAN65/2016/document
s/EDAN65-map.pdf">M:A</h3>

<a

href="http://fileadmin.cs.lth.se/cs/Education/EDAN65/2016/lectures
/L01.pdf">Slides

Appel Book: Ch 1-1.2
Moodle
Quiz

...

.gitconfig

EDAN65,	Lecture	01 44

[user]
name =	Görel	Hedin
email	=	gorel.hedin@cs.lth.se

[push]
default	=	simple

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Time [s]

P
o

si
tio

n
 [

m
]

Earth ball
Moon ball

Modelica
http://www.modelica.org

EDAN65,	Lecture	01 45

model BouncingBall //A	model of a	bouncing ball
parameter Real	g	=	9.81;	//	Acceleration	due to gravity
parameter Real	e	=	0.9;	//	Elasticity coefficient
Real	pos(start=1);	//	Position	of the	ball
Real	vel(start=0);	//	Velocity of the	ball

equation
der(pos)	=	vel;	/	/	Newtons	second	law
der(vel)	=	-g;
when pos <=0	then
reinit(vel,-e*pre(vel));	//	set	velocity after bounce end	when;

end BouncingBall;

Grafchart
http://www.control.lth.se/Research/tools/grafchart.html

EDAN65,	Lecture	01 46

Control	Builder Diagram
http://new.abb.com

EDAN65,	Lecture	01 47

Related research	at	LTH
• Extensible compiler tools (Görel	Hedin)

• Real-time garbage collection (Roger	Henriksson)

• Code optimization for	multiprocessors	(Jonas	Skeppstedt)

• Natural language processing (Pierre	Nugues)

• Constraint solver languages (Krzysztof	Kuchcinski)

• Data-flow languages (Jörn	Janneck)

• Languages for	pervasive systems	(Boris	Magnusson)

• Languages for	requirements modeling (Björn	Regnell)

• Languages for	simulation	and	control (The	control department)

EDAN65,	Lecture	01 48

Summary	questions

49

• What are the	major	compiler phases?
• What is	the	difference between the	analysis and	synthesis phases?
• Why do	we use intermediate code?
• What is	the	advantage of separating the	front	and	back	ends?
• What is

• a	lexeme?
• a	token?
• a	parse tree?
• an	abstract	syntax	tree?
• intermediate code?

• What is	the	difference between assembly code,	object code,	and	
executable code?

• What is	bytecode,	an	interpreter,	a	virtual machine?
• What is	a	JIT	compiler?
• What kind	of errors can be	caught by	a	compiler?	A	runtime system?

EDAN65,	Lecture	01

See	course	website http://cs.lth.se/edan65 for	what to do	this week.

