
EDAN65: Compilers
Computer Science
Lund University

September 08, 2014

E04: Context-free grammars

E04-1: Suppose there is a nonterminal stmt for statements. Construct an EBNF grammar
for a sequence of

(a) zero or more statements, with a semicolon after each statement.

(b) one or more statements, with a semicolon between statements.

(c) zero or more statements, with a semicolon between statements.

E04-2: Translate the grammars in the previous problem to canonical form.

E04-3: The following grammar generates a language on the alphabet { "(", ")" }.

S → "(" S ")"
S → S S
S → "(" ")"

(a) Which strings with length 6 belong to the language?

(b) The grammar is ambiguous. Which is the shortest string in the language with
at least two parse trees?

E04-4: The following grammar is ambiguous. Construct an unambiguous grammar accept-
ing the same language.

S → "(" S ")"
S → S S
S → ε

E04-5: The following grammar for logical expressions is ambiguous.

E → "!" E
E → E "&&" E
E → E "||" E

1

EDAN65: Compilers Exercise set E04

E → ID

Assume that ! has higher precedence than && which in turn precedes over ||. Con-
struct an unambiguous EBNF grammar that respects the precedences describing
the same language.

E04-6: Construct a canonical grammar that is equivalent to the following EBNF rule.

CallStmt → ID "(" (ε | Expr ("," Expr)*) ")"

E04-7: Every language that is described by a regular expression can be described by a right
regular grammar, where all productions have one of the forms

A → a B
A → a
A → ε

where A and B are non-terminals and a is a terminal. Note that right recursion is
allowed, but not left recursion.1

Construct a right regular grammar for the language described by the regular ex-
pression

(a* b) | (b a*)

Is it possible to do this without using productions on the form A → a ?

E04-8: Suppose you would like to write a parser that can parse basic regular expressions
over the alphabet {"a", "b"}. Some short strings in this language are: "a", "b",
"a*", "ab", "(abb)*", "(a|b)".

(a) What is the alphabet of this regular expression language?

(b) Construct an EBNF grammar for this language, and that respects the normal
precedences of the regular expression operators.

1Equivalently, each regular expression can be described by a left regular grammar which only allows
left recursion.

2

