EDAN65: Compilers
Computer Science
August 28, 2016
Lund University

E02: Regular expressions and scanning

E02-1: Write a regular expression describing the language of all natural numbers, $0,1,2$, $3, \ldots$ Unnecessary initial zeros are allowed, like 00135.

E02-2: Write a regular expression describing the language of all natural binary numbers 0 , $1,10,11,100, \ldots$, but where unnecessary initial zeros are not allowed.

E02-3: Write a regular expression describing the language of all arithmetic expressions with natural numbers and the operators + and $*$, but without parentheses. Give some examples of expressions in the language.

E02-4: A binary string is a string over the binary alphabet 0,1 . A binary string may be the empty string, in contrast to binary numerals which will always have at least one digit. Write a regular expression describing the language of all binary strings that
a) contain the string 11 .
b) do not contain the string 11 .

E02-5: Construct
a) an NFA that accepts all binary strings that contain the string 11. The automaton should not be deterministic.
b) a DFA that accepts all binary strings that contain the string 11 .

E02-6: Use simulation to construct a DFA that accepts the same language as the following NFA. Mark each state in the new automaton with the corresponding state numbers of the NFA.

E02-7: Construct a DFA that accepts all binary strings that do not contain the string 11.

E02-8: Construct a combined DFA recognizing binary integers and binary floating point numbers described by
BININT=[0-9]+
BNFLOAT=[0-9]+ "." [0-9]+
Make tables for a table-driven scanner.
E02-9: The following automaton describes a lexical analyzer. Give suitable names to the final states and write down regular expressions for them.

E02-10: Suppose that the lexical analyzer for the previous example always tries to do a longest match. How many characters past the end of a token might it have to examine before matching the token? Give an example where this lookahead is required.

