
2017-10-15 18)36JastAdd.org

Sida 1 av 12http://jastadd.org/web/documentation/reference-manual.php

About

Download

Documentation

Concept overview

Tutorial

Reference manual

Examples

Concurrent Attributes

ExtendJ: The JastAdd Extensible
Java Compiler

Tool support

Applications

Contact

Reference Manual for JastAdd 2.3.0
Click here to read the JastAdd 2.1.13 manual.

Index
Syntax overview
Abstract Syntax

Predefined AST classes
Basic constructs, Naming, Tokens, Inheritance, NTAs
Lists & Opts, Building, Using JJTree

Aspects
Aspect files (.jadd and .jrag files)
Supported AOP features, Differences from AspectJ, Idiom for aspect variables

Attributes
Synthesized, inherited, method syntax, lazy/caching, refine
Parameterized, broadcasting, circular, NTAs, collections

Rewrites
Command line syntax

Quick syntax overview
AST Specification Syntax

Syntax for AST class declarations in .ast files:

Syntax Meaning
A; AST class
B: S; AST subclass (B is a subclass of S)
abstract A; AST class, abstract
B ::= Y; Child component Y.
B ::= MyY:Y; Child component MyY of type Y.
X ::= C*; List component C, containing C nodes.
X ::= MyC:C*; List component MyC, containing C nodes.
Y ::= [D]; Optional component D.
Y ::= [MyD:D]; Optional component MyD of type D.
Z ::= <E>; Token component E of type String.
Z ::= <F:Integer>; Token component F of type Integer.
U ::= /V/; NTA component V.
U ::= /G:V/; NTA component G of type V.

Aspect declarations

Syntax for attribute declarations in .jrag and .jadd files:

Declaration Meaning
aspect N { decl* } Aspect declaration
syn T A.c(); Synthesized attribute
syn T A.c() = exp; Synthesized attribute, default equation
syn T A.c() { stmt* } Synthesized attribute, method body
syn lazy T A.c() { stmt* } Synthesized attribute, cached
syn X A.c() circular [bot] = exp; Synthesized attribute, circular
syn nta X A.c() = exp; Nonterminal attribute (NTA)
eq B.c() = exp; Synthesized equation
eq B.c() { stmt* } Synthesized equation, method body
inh X A.i(); Inherited attribute
inh lazy X A.i(); Inherited attribute, cached
eq B.getChild().i() = exp; Inherited equation, broadcast
eq B.getChild().i() { stmt* } Inherited equation, broadcast, method body
eq B.getA().i() = exp; Inherited equation for the A child of B nodes.
eq B.getDecl(int index).i() = exp; Inherited equation for the Decl list component of B nodes.
coll LinkedList A.c() [new LinkedList()] root A; Collection attribute
coll LinkedList A.c(); Collection attribute, short form
B contributes exp when cond to A.c() for targetexp; Collection contribution
B contributes exp when cond to A.c(); Collection root contribution
refine FileName thing = exp; Refine an attribute equation (synthesized or inherited)
refine FileName thing { stmt* } Refine an attribute or intertype method
rewrite A { when condition to B { stmt* } } AST node rewrite
uncache A.x(); Never cache A.x()
cache A.y(int a); Please cache A.y(int)
public void A.m(int x) { stmt* } Intertype declared method
public String A.f = exp; Intertype declared field

Abstract syntax
Abstract grammars are specified in .ast files and are used to generate a Java class hierarchy. The classes in an abstract grammar are referred to

http://jastadd.org/web/index.php
http://jastadd.org/web/download.php
http://jastadd.org/web/documentation
http://jastadd.org/web/documentation/concept-overview.php
http://jastadd.org/web/documentation/tutorial.php
http://jastadd.org/web/documentation/reference-manual.php
http://jastadd.org/web/examples.php
http://jastadd.org/web/concurrent.php
http://jastadd.org/web/extendj
http://jastadd.org/web/tool-support
http://jastadd.org/web/applications.php
http://jastadd.org/web/contact.php
http://jastadd.org/web
http://jastadd.org/releases/jastadd2/2.1.13/reference-manual.php

2017-10-15 18)36JastAdd.org

Sida 2 av 12http://jastadd.org/web/documentation/reference-manual.php

as AST classes. The AST classes are used by the parser to build Abstract Syntax Trees (ASTs).

Predefined AST classes

The AST classes include user declared classes in the abstract grammar, as well as a few predefined AST classes that are implicitly generated. The
predefined AST classes are described in the table below.

Predefined
AST class Purpose Accessing children

ASTNode

This is the base class
which all other AST
classes extend. Children
are numbered from 0 to
getNumChild() - 1.

Children are accessed using the generated methods getNumChild() and getChild(int).

public ASTNode<T extends ASTNode> implements Cloneable {
 int getNumChild();
 ASTNode getChild(int index);
 ASTNode getParent();
 Iterable<T> astChildren();
 Iterator<T> astChildIterator();
}

List
Contains elements of list
components in AST
classes.

getNumChild() and getChild(int) are inherited from ASTNode. The enhanced for statement can
be used on the list since List implements Iterable<ASTNode>.

public List<T extends ASTNode> extends ASTNode<T> implements Iterable<T> {
}

Opt
Used to implement optional
components in AST
classes. Has 0 or 1 child.

getNumChild() and getChild(int) inherited from ASTNode can be used when accessing Opt
nodes directly.

public Opt<T extends ASTNode> extends ASTNode<T> {
}

See also "About Lists and Opts".

Abstract syntax constructs

The table below documents the syntax used to declare user declared AST classes in .ast files.

Basic constructs

Construct Meaning Generated API

abstract A; A is an abstract AST class. A corresponds to a nonterminal in the
context free grammar. abstract class A extends ASTNode { }

B: A ::= ...; B is a concrete subclass of A. B corresponds to a production of A in
the context-free grammar. class B extends A { }

C: A ::= A B C; C has three children of types A, B, and C. The API supports typed
traversal of the children.

class C extends A {
 A getA();
 B getB();
 C getC();
}

D: A; D has no children. D corresponds to an empty production of A. class D extends A { }

E1 ::= A; E1 has a child of type A.
class E1 {
 A getA();
}

E2 ::= [B]; E2 has an optional component of type B.

class E2 {
 boolean hasB();
 B getB();
}

E3 ::= C*; E3 has a list component of zero or more C nodes.

class E3 {
 int getNumC();
 C getC(int);
 List<C> getCList();
}

E4 ::= <D>;

E4 has a token component of type D.

The set method is intended to be used only by the parser to set the
token value. The token value should not be changed after tree
construction, and the set method should not be used by an attribute
equation as it has side effects.

class E4 {
 String getD();
 void setD(String);
}

2017-10-15 18)36JastAdd.org

Sida 3 av 12http://jastadd.org/web/documentation/reference-manual.php

A ::= /D/;
A has a nonterminal attribute (NTA) component D. The D component
is not created by the parser, it is instead computed on demand,
using an attribute equation. See specifying NTAs for more info.

class A {
 D getD();
}

Naming children

Construct Meaning Generated API

F ::= Foo:A Bar:B;

It is possible to give components custom names.

Note! If there is more than one child of the same type, they must be named.

class F {
 A getFoo();
 B getBar();
}

G ::= Thing:B*; List components can be named.

class G {
 int getNumThing();
 B getThing(int);
 List getThingList();
}

H ::= [Foo:X]; Optional components can be named.
class H {
 boolean hasFoo();
 X getFoo();
}

Typed tokens

Tokens are implictly String typed. But you can also give a token an explicit type:

Construct Meaning Generated API

A ::= <T>; Here, T is a token of the type String.
class A {
 String getT();
 void setT(String);
}

A ::= <T:String>; This is equivalent to the example above.

A ::= <T:int>; Here, T is a token of the Java primitive type int.
class A {
 int getT();
 void setT(int);
}

A ::= <Ref:B>;
Here, Ref is an intra-AST reference to a node of type B. This is a static reference to
another node in the AST. The reference is not computed, rather it is set once during
tree building.

class A {
 B getRef();
 void setRef(B);
}

Inheriting children

AST class children are inherited by subtypes.

Construct Meaning Generated API

abstract A ::= B C;
D: A;
E: A;

D and E are subclasses of A and inherit the children of A.

abstract class A extends ASTNode {
 B getB();
 C getC();
}
class D extends A { }
class E extends A { }

A ::= B C;
D: A ::= F;

A subclass declaration can add children, but not remove children
from the superclass. Here, D has the children B, C, F.

class A extends ASTNode {
 B getB();
 C getC();
}
class D extends A {
 F getF();
}

A ::= B C;

Subclasses can repeat superclass children to change the child
order. Here, the order of children in D is: C, B, F. This affects the
generated constructors of D and the children accessed by

2017-10-15 18)36JastAdd.org

Sida 4 av 12http://jastadd.org/web/documentation/reference-manual.php

D: A ::= C F B; getChild(int). See below for more info about generated
constructors.

Same as above.

List and Opt components

JastAdd generates accessor methods to access optional and list components. The generated methods can be used instead of accessing the Opt
and List container directly. The generated accessor methods are listed in the table below. The Opt and List nodes can be accessed by
getXOpt() and getXList() , if needed.

Construct Generated API Example use

A ::= [B];

class A {
 boolean hasB();
 B getB();
 Opt getBOpt();
}

A a = ...;
if (a.hasB()) {
 B b = a.getB();
 ...
}

C ::= D*;

class C {
 int getNumD();
 D getD(int index);
 List<D> getDList();
}

C c = ...;
for (D d : c.getDList()) {
 ...
}

Building AST nodes

Use the following constructor API to build the AST. Typically you build the AST in the action routines of your parser. But you can of course also
create an AST by coding it explicitly, e.g., in a test case. If you use JavaCC and JJTree, see below.

AST declaration Generated constructor Comment

A ::= B C [D] E* <G>; A(B, C, Opt<D>, List<E>, String) The constructor parameter order is same as the child order.

A ::= A /B/ C; A(A, C) Nonterminal attributes are not initialized via the constructor.

The predefined AST classes Opt and List have some default constructors to help with building trees:

Predefined
AST class Generated constructors

List<T>

List() create an empty list.
List(T...) this constructor accepts a variable number of AST nodes as arguments,
and adds the arguments as children of the constructed list.
List(Collection<T>) adds all AST nodes in a collection to the list.

The constructor parameter order is
same as the child order.

Opt<T> Opt() creates an empty optional.
Opt(T) creates an optional containing the given AST node.

Nonterminal attributes are not
initialized via the constructor.

The List node constructor that takes no arguments can be used together with the add method which returns the list itself, so you can chain
multiple list additions after creating a new node, like this:

A1 a = ...;
A2 a = ...;
List<A> list = new List<A>().add(a1).add(a2);

Below is an example of building an AST based on the grammar

A ::= B*;
B ::= C;
C ::= <ID>;

An example AST for this grammar can be built like this:

A = new A(new List(new B(new C("foo")), new B(new C("bar"))));

Building ASTs using JJTree

If you use JJTree, the tree building code is generated by JJTree. You can use the "#X" notation in the JJTree specification to guide the node creation.

JJTree maintains a stack of created nodes. The "#X" notation means:

1. Create a new object of type X.
2. Pop the nodes that were created during this parse method and insert them as children to the new X node.
3. Push the new X node.

You need to explicitly create List and Opt nodes. When the parsing structure does not fit the abstract tree, e.g. when parsing expressions, you
need to use some additional tricks. You also need to set token values explicitly.

Aspects

2017-10-15 18)36JastAdd.org

Sida 5 av 12http://jastadd.org/web/documentation/reference-manual.php

JastAdd aspects support intertype declarations for AST classes. An intertype declaration is a declaration that appears in an aspect file, but that
actually belongs to an AST class. The JastAdd system reads the aspect files and weaves intertype declarations into the target AST classes.

The kinds of intertype declarations that can occur in an aspect include ordinary Java declarations like methods and fields, and attribute grammar
declarations like attributes, equations, and rewrites.

An aspect file can contain import declarations and one or more aspects, e.g.:

import java.lang.util.*;
aspect A {
 abstract public void Stmt.m();
 public void WhileStmt.m() { ... }
 public void IfStmt.m() { ... }
 ...
}
aspect B {
 private boolean Stmt.count = 0;
}

The aspect syntax is similar to that of AspectJ, but in contrast JastAdd aspects are not real language constructs. The JastAdd system simply reads
the aspect files and inserts the intertype declarations into the appropriate AST classes. For example, the method m() and its implementations are
inserted into classes Stmt , WhileStmt , and IfStmt . And the declaration of the field count is inserted into the class Stmt . Import
declarations are inserted into all AST classes for which there are intertype declarations in the aspect. So, the import of java.lang.util.* is
inserted into Stmt.java , WhileStmt.java , and IfStmt.java . For a more detailed discussion on the similarities and differences between
JastAdd aspects and AspectJ, see below.

The aspect names, e.g., A and B above, do not show up in the woven Java code, other than in generated documentation comments for woven
attributes and intertype declarations. Aspect names are used for refine declarations.

Aspect names are a way to indicate the purpose of the aspect. A common idiom for naming aspects is to have one aspect per aspect file, and give
the aspect the same name as the filename sans the extension.

JADD and JRAG files

An aspect file can have the suffix .jadd or .jrag . The JastAdd system does not differ between these two types of files, but we recommend the
following use:

Use .jrag files for declarative aspects, i.e., where you add attributes, equations, and rewrites to the AST classes
Use .jadd files for imperative aspects, i.e., where you add ordinary fields and methods to the AST classes

It is perfectly fine to not follow this convention, i.e., to mix both imperative and declarative features in the same aspect, but we try to follow the
convention in our examples in order to enhance the readability of a system.

Example imperative aspect (JADD)

Here is an example imperative aspect that adds pretty printing behavior to some AST classes. Typically, this file would be named
PrettyPrint.jadd :

aspect PrettyPrint {
 void WhileStmt.pp() {
 System.out.format("while %s do %s%n", getExp().pp(), getStmt().pp());
 }
 void IfStmt.pp() { ... }
 void Exp.pp() { ... }
}

Example declarative aspect (JRAG)

Here is an example declarative aspect that adds type checking to some AST classes. Typically, this file would be named TypeCheck.jrag :

import TypeSystem.Type;
aspect TypeCheck {
 syn Type Exp.actualType();
 eq LogicalExp.actualType() = Type.boolean();
 eq IdUse.actualType() = decl().getType();
 ...
 inh Type Exp.expectedType();
 eq WhileStmt.getExp().expectedType() = Type.boolean();
 syn boolean Exp.typeError() = !(actualType().equals(expectedType());
}

Supported AOP features

Feature Comment
Intertype
declaration of
AST fields,
methods, and
constructors.

See the prettyprinting example above. The declarations are inserted into the corresponding AST classes by the AST weaver. Any
modifiers (public, private, static, etc.), are interpreted in the context of the AST class. I.e., not as in AspectJ where the public/private
modifiers relate to the aspect.

Intertype
declaration of
attributes,
equations,
and rewrites.

See the type checking example above. For more details, see Attributes. Note that access modifiers (public, private, etc.) are not
supported for attributes. All declared attributes generate public accessor methods in the AST classes.

Declare
additional
interfaces for
AST classes.

In an aspect you can write

WhileStmt implements LoopInterface;

This inserts an "implements LoopInterface" clause in the generated WhileStmt class.

2017-10-15 18)36JastAdd.org

Sida 6 av 12http://jastadd.org/web/documentation/reference-manual.php

Declare
classes and
interfaces in
an aspect.

In an aspect you can write

interface I { ... }
class C { ... }

This is equivalent to declaring the interface and class in separate ordinary Java files. The possibility to declare them inside an
aspect is just for convenience.

Refine a
method
declared in
another
aspect.

For extensibility it is often useful to be able to replace or refine methods declared in another aspect. This can be done using a
"refine" clause. In the following example, the aspect A declares a method m() in the class C. In the aspect B, the method is
replaced, using a "refine" clause. This is similar to overriding a method in a subclass, but here the "overridden" method is in the
same class, just defined in another aspect. Inside the body of the refined method, the original method can be called explicitly. This
is similar to a call to super for overriding methods.

aspect A {
 void C.m() { ... }
}

aspect B {
 refine A void C.m() { // Similar to overriding.
 ...
 refined(); // Similar to call to super.
 ...
 }
}

Note that the refine clause explicitly states which aspect is refined (A in this case). Additional aspects may further refine the method.
For example, an aspect C can refine the method refined in B.

In most situations, the modifiers, type parameters, and return type of the original declaration should be re-stated in the refinement.

The original method can be called using the keyword "refined". JastAdd replaces all occurrences of this keyword with the new name
of the refined method. Be careful with how you use refined - even occurrences in string literals or comments are replaced! With the
command line flag "--refineLegacy" you can use the legacy syntax for calling the refined method:

aspect A {
 void C.m() { ... }
}

aspect B {
 refine A void C.m() { // similar to overriding
 ...
 AspectFile.C.m();
 ...
 }
}

Note: AspectFile is the name of the file (minus extension) that contains the original declaration.

Similarities and differences from AspectJ

The aspect concept in JastAdd was developed in parallel to the AspectJ development, and we have gradually adopted the AspectJ syntax, for
features that are similar. The important similarity between JastAdd aspects and AspectJ aspects is the intertype declarations. In addition, JastAdd
aspects support attribute grammar features which AspectJ does not. Note, however, that JastAdd supports intertype declarations only for the AST
classes, not for classes in general as AspectJ does. There are many other features of AspectJ that are not supported in JastAdd, for example:

Fields and methods private to an aspect are not supported.
Declaration of additional parent classes is not supported.
Dynamic features like AspectJ's pointcuts or advice are not supported.

Idiom for private fields and methods

As mentioned, JastAdd does not support fields and methods that are private to an aspect. As a workaround idiom, such fields and methods can be
implemented as (non-private) static fields and methods in class ASTNode . As an example, consider the pretty printer. We might want to
parameterize the pretty printer methods so that it can pretty print to any PrintStream object, not only on System.out . Here is how you could
write this in AspectJ and the corresponding JastAdd implementation:

AspectJ code JastAdd code

aspect PrettyPrinter {
 private PrintStream ppStream = null;
 public void prettyprint(ASTNode n, PrintStream s) {
 ppStream = s;
 n.pp("");
 ppStream = null;
 }
 void ASTNode.pp(String indent) { }
 void WhileStmt.pp(String indent) {
 ...
 ppStream.println(...);
 ...
 }
 ...
}

aspect PrettyPrinter {
 static PrintStream ASTNode.ppStream = null;
 public void ASTNode.prettyprint(PrintStream s) {
 ppStream = s;
 pp("");
 ppStream = null;
 }
 void ASTNode.pp(String indent) { }
 void WhileStmt.pp(String indent) {
 ...
 ppStream.println(...);
 ...
 }
 ...
}

Attributes
Attributes are specified in JastAdd aspect files.

2017-10-15 18)36JastAdd.org

Sida 7 av 12http://jastadd.org/web/documentation/reference-manual.php

Different kinds of attributes are documented in the following sections.

Synthesized attributes

Syntax Meaning

syn T A.x();

Declares a synthesized attribute x of type T in class A.

There must be equations defining x in A (if A is concrete) or in all concrete subclasses of A (if A is abstract).

Note! Synthesized attributes are conceptually equivalent to abstract virtual functions (without side-effects).
The main difference is that their values may be cached (see below). They can be accessed in the same way
as virtual functions. I.e., the declaration generates the following Java API:

T A.x();

eq A.x() = Java-expr;

The equation defines the value of the synthesized attribute x of AST nodes of type A.

The Java-expression that defines the value must be free from externally visible side-effects. The context of
the expression is the class A, and any part of the class A's API may be used in the computation, including
accesses to other attributes.

Note! Equations defining synthesized attributes are conceptually equivalent to virtual method implementations
(without side-effects).

eq B.x() = Java-expr;

Suppose B is a subclass of A. This equation overrides the corresponding (default) equation for A.x().

Note! This is equivalent to overriding method implementations.

syn T A.x() = Java-expr;

The declaration of a synthesized attribute and the (default) equation for it can be written in one clause. So the
clause to the left is equivalent to:

syn T A.x();
eq A.x() = Java-expression;

Inherited attributes

Inherited attributes propagate information down in the AST. When an inherited attribute is evaluated, the evaluation code first searches upward in the
AST for a node that can compute the inherited attribute. The equation may be on the parent of the current node, or an ancestor, even the root of the
tree.

Syntax Meaning

inh T A.y();

y is an inherited attribute in class A and of type T. There must be equations defining y in all classes
that have children of type A. If a class has several children of type A, there must be one equation
for each of them. Inherited attributes can be accessed in the same way as synthesized attributes.
I.e., the declaration generates the following Java API:

T A.y();

Note! Inherited attributes differ from ordinary virtual functions in that their definitions
(equations/method implementations) are located in the parent AST node, rather than in the node
itself. Note! The concept of inherited attributes in this Attribute Grammar sense is completely
different from object-oriented inheritance. Both attribute grammars and object-orientation were
invented in the late 60's and the use of the same term "inheritance" is probably a mere coincidence:
In AGs, inheritance takes place between nodes in a syntax tree. In OO, inheritance takes place
between classes in a class hierarchy.

eq C.getA().y() = Java-expr;

This equation defines the value of the inherited attribute y() of the A child of a C node. Note! The
Java-expression executes in the context of C. Note! The equation is similar to a method
implementation. Note! The equation actually applies to all inherited attributes y in the subtree rooted
at A, provided that they declare the y attribute. See below under broadcast attributes.

eq D.getA().y() = Java-expr;

Suppose D is a subclass of C. In this case, the equation overrides the previous one.

Note! This is analogous to overriding a virtual method implementation.

Method syntax

It is possible to write the computation of an attribute value as a method body instead of as a single expression. This may be convenient when the
computation is complex. Inside the method body it is possible to use ordinary imperative Java code with local variables, assignments, loops, etc.
However, the net result of the computation must not have any side-effects. (Currently, JastAdd does not check the absence of such side-effects, but
future versions might do so.)

Example of a method body in a synthesized attribute:

syn T A.x() {
 ...
 return Java-expr;
}

Cached attributes

An attribute can be declared lazy in order to speed up subsequent evaluations of the attribute. An attribute that is declared lazy will have its value is
cached after the first access to it. The next time the attribute is accessed, the cached value is returned directly. We recommend that attributes that
are expensive to compute and that are accessed multiple times should be declared lazy. For example, declaration bindings and type attributes are
good candidates for caching. JastAdd has facilities for automatically computing good cache configurations based on profiling, but this is not yet
documented here.

Example lazy attribute declaration:

2017-10-15 18)36JastAdd.org

Sida 8 av 12http://jastadd.org/web/documentation/reference-manual.php

syn lazy A.x();

Another way to change the caching behaviour of attributes is to use a separate cache declaration:

Syntax Meaning

uncache A.x(); This prevents attribute x of class A from ever being cached, though attributes with the same name in subtypes of A can still
be cached if declared lazy.

cache A.x(); This tells JastAdd to cache attribute x of class A.

Cache declarations take precedence over the lazy keyword, but conflicting cache declarations for a single attribute will cause JastAdd to report
an error as there is no way to select the proper caching strategy.

Refining attributes

Equations defined in one aspect can be refined in another aspect, in the same way as methods can be refined, see JastAdd aspect files. In the
example below, the equation replaces the corresponding equation declared in the aspect named S :

refine S eq B.x() = Java-expr;

The value of the original equation in S can be accessed by the expression S.B.x() . Older JastAdd code accessed the original equation by
using the expression refined() .

Parameterized attributes

Attributes can have parameters. This is a bit unusual for attribute grammars, but a natural generalization when attributes are viewed as virtual
functions.

Syntax Meaning

syn T A.x(int a);
eq A.x(int a) {
 return Java-expr;
}

Here, x is a parameterized synthesized attribute. The equation is similar to a method
implementation and the argument values can be used in the computation of the resulting value.

inh T A.y(int a);
eq C.getA().y(int a) {
 return Java-expr;
}

Here, y is a parameterized inherited attribute. The equation executes in the context of C and can in
addition access the arguments (a in this case).

Broadcasting inherited attributes

Often, an inherited attribute is used in a number of places in a subtree. If basic inherited attributes are used, the value needs to be copied explicitly
using inherited attributes in all the intermediate nodes. For convenience, JastAdd supports another technique called broadcasting, where an
inherited attribute is available in every node of a complete subtree. An equation defining an inherited attribute actually broadcasts the value to the
complete subtree of the child. By using this technique, no explicit copy attributes are needed.

Syntax Meaning

eq C.getA().y() = ...;
inh T A.y();

Here, the equation defines an inherited attribute y() declared in the A child of a C node. This
equation actually applies not only to the inherited y() attribute of the A child, but to all inherited y()
attributes in the whole subtree of A. In order to for a node N in the subtree to access y(), the
attribute must, however, be exposed by declaring y() as an inherited attribute of N.

inh T B.y();
Here, the attribute y() is exposed in B by declaring it as an inherited attribute there. If there is a B
node that is in the subtree rooted at the A that is a child of a C node, then the equation above will
apply.

Overruling broadcast definitions

A broadcast definition of an attribute a() applies to all nodes in a subtree rooted by N. If, however, there is a node in the subtree which has another
equation that defines a() for a child M, that equation will take precedence for defining a() in M and its subtree.

Differentiating between children in a list

When defining an inherited attribute of a child node that is an element of a list, it is sometimes useful to know which index the child node has. This
can be done as follows:

C ::= E*;
eq C.getE(int index).y() = expr;

Here, a C node has a list of E children. When defining the y() attribute of a given (subtree of an) E child, the value might depend on the
index of the child. For example, if the E nodes are actual arguments of a procedure, we might want to pass down the expected type of each
argument.

The example equation shows how to declare the index as a parameter of the getE() method, and to access the index in the equation body.

Circular attributes

Attributes can be circularly defined, meaning that the value of the attribute can depend (indirectly) on itself. Circular attributes are evaluated
iteratively, starting with a start value given in the declaration of the attribute. The evaluation stops when the value equals that for the previous

2017-10-15 18)36JastAdd.org

Sida 9 av 12http://jastadd.org/web/documentation/reference-manual.php

iteration.

Circular attributes are always cached. They do not need to be declared "lazy".

It is an error if a lazy attribute is circular, but not declared as such. With the visitCheck and componentCheck options this can be detected at
runtime, and an exception will be generated. To be sure that the evaluation of circular attributes will converge, the values should be arranged into
lattices of finite height, the bottom values should be used as starting values, and each equation on the cycle should be monotonic with respect to the
lattices.

syn T A.x(int a) circular [bv];
eq A.x(int a) = rv;

Here, the attribute x is a circular attribute. The starting value is bv (a Java expression).

The equation defines x as having the value computed by the Java expression rv . Note that rv may depend (directly or indirectly) on x.

If an attribute A.x() that was not declared circular becomes part of a circular evaluation, for example by adding an extension aspect, then it is
essential that the original attribute is never cached. This can ensured using the uncache declaration described above:

uncache A.x();

Attribute systems with circular attributes are well defined if at least one attribute on every possible circular dependency cycle is declared circular and
the other attributes on all cycles are either also declared circular or declared uncached as above.

The --safeLazy Option

Although it is normally an error to have cached non-circular attributes in a circular evaluation, the safeLazy option can be used to make non-
circular attributes aware of circular evaluations and safely cache their results during circular evaluation. This still requires that at least one attribute
on every circular dependency cycle is declared circular.

The safeLazy option adds an extra cache field for each cached non-circular attribute which tracks the cycle ID on which the attribute was last
evaluated. When the attribute is later re-evaluated it can reuse the cached value if the cycle ID is identical, or if it was previously cached outside of
any circular evaluation.

Nonterminal attributes

Nonterminal attributes (NTAs) are nodes in the AST. Whereas normal AST nodes are built by the parser, the NTAs are viewed as attributes and are
defined by equations.

NTAs can be inherited or synthesized.
The value in the equation should be a freshly built AST subtree. It should be complete in the sense that all its children should also be freshly
created nodes (i.e., they are not allowed to be initialized to null).
The NTA can itself have attributes that can be accessed like normal attributes.
If the NTA has inherited attributes, there must be equations for those attributes in some ancestor, as for normal children.

Declaration Syntax

syn nta C A.anNTA() = new C();

Older syntax

In the older syntax, a nonterminal attribute is added as follows:

Declare the NTA in the ast file, see also NTAs in the abstract syntax.
Declare the NTA as an attribute in a jrag file. It can be declared as a synthesized or an inherited attribute. The name of the attribute should be
the same as in the AST traversal API, e.g., getX if the NTA is called X.
Add equations defining the NTA. The defining value should be a new AST of the appropriate type, created using the AST building API.

Note that if the NTA is a list or an optional node, you need to create the appropriate AST with a List or an Opt node as its root. See examples
below.

Simple synthesized NTA

In an .ast file:

A ::= B /C/;

In a .jrag file:

syn C A.getC() = new C();

The NTA C is declared in the .ast file. It is then declared as a synthesized attribute getC() in the .jrag file. The equation is provided directly in the
declaration and creates a new C node.

List NTA

In an .ast file:

A ::= B /C*/;

In a .jrag file:

syn C A.getCList() =
 new List()
 .add(new C())
 .add(new C());

The list NTA C is declared in the .ast file. It is then declared as a synthesized attribute getCList() (the same name as in the implementation level
traversal API) in the .jrag file. The equation is provided directly in the declaration and creates a List node to which is added a number of C nodes

2017-10-15 18)36JastAdd.org

Sida 10 av 12http://jastadd.org/web/documentation/reference-manual.php

(two in this example).

Collection attributes

Collection attributes have composite values that are defined by so called contributions that each add a small piece to the composite value. The
contributions may be located in any nodes in the AST.

Declaration syntax

The syntax for declaring a collection attribute looks like this:

coll T A.c() [fresh] with m root R;

The individual parts of the declaration above are:

1. T is the type of the attribute. Usually T is a subtype of java.lang.Collection.
2. A is AST class on which the attribute is evaluated.
3. The .c() part declares the attribute name, in this case c.
4. (optional) [fresh] tells JastAdd how the intermediate collection result is initialized. The Java expression fresh creates an empty instance of

the result type. This part is optional if T is a concrete type with a default constructor, if it is omitted the default constructor of the type T is used,
i.e. new T().

5. (optional) with m specifies the name of a method to be used for updating the intermediate collection object. This part is optional and the
default method add is used if no update method is specified. The update method must fulfill these requirements:

The method m, should be a one-argument method of T.
The method m should mutate the T object by adding one object to it.
The method m should be commutative, in the sense that the order of calling m for different contributions should yield the same resulting
T value.

6. (optional) The root R part declares the collection root type. The collection mechanism starts by finding the nearest ancestor node of type R for
the A node which the collection attribute is evaluated on. The subtree rooted at that nearest R ancestor is searched for contributions to A.c(),
this means that the collection is scoped to the subtree of R, and contributions outside that tree are not visible.

Contribution declaration

When JastAdd evaluates a collection attribute it first performs a "survey" of the AST, searching for contributions to the given collection attribute.
Contributions are added by using contribution statements like below:

N1 contributes value-exp
 when cond-exp
 to N2.a()
 for N2-ref-exp;

Let's look at each part of the above template statement:

N1 is the type of AST nodes that provide this particular contribution to the target collection attribute.
value-exp is a Java expression that evaluates to an object to be added to the intermediate collection of the target collection attribute.
(optional) when cond-exp is an optional contribution condition: the contribution is only added to the target collection attribute if the Java
expression cond-exp evaluates to true.
N2 is the node type where the target collection attribute is declared.
.a() is the name of the target collection attribute.
(optional) for N2-ref-exp gives a Java expression, N2-ref-exp, which evaluates to a reference to the AST node that owns the collection
attribute this contribution is contributing to. This is the target expression, and it can be omitted if the target node is identical to the collection
root node.

One can optionally contribute one contribution to multiple target nodes by using this syntax:

N1 contributes value-exp
 when cond-exp
 to N2.a()
 for each N2-ref-set;

where N2-ref-set is a Java expression that evaluates to an Iterable<N2> containing references for the set of contribution target nodes.

It is possible to contribute multiple values in a single contribution by using this syntax:

N1 contributes each value-exp
 when cond-exp
 to N2.a()
 for each N2-ref-set;

Note the each before value-exp . This syntax works if value-exp has the type Iterable<E> where E is the element type of the
collection attribute. For example, if the collection attribute is declared as coll LinkedList<String> ... then value-exp should have the
type Iterable<String> .

NTA Contributions

It is possible to add contributions from an NTA child to a collection attribute using the following variation of the contributes statement:

N1 contributes nta getMyNta() to N2.a();

The above statement means that the NTA child named MyNta in node type N1 is also searched for contributions during the survey phase of the
evaluation of the collection attribute N2.a() .

Custom Collection Survey

It is possible to customize the tree traversal used to search for contributions for a collection attribute. This can be done using an alternative form of
the contributes statement, where the expression part is replaced by a code block:

N1 contributes {
 getA().collectContributions();
 super.collectContributions();

2017-10-15 18)36JastAdd.org

Sida 11 av 12http://jastadd.org/web/documentation/reference-manual.php

} to N2.a();

The meaning of the above code is that the N1 node type should search its A child while searching contributions for the N2.a() collection
attribute. The call to super.collectContributions() is needed to ensure that all regular children of N1 are also searched for contributions.

Multiple custom collection survey blocks like this can be used, but only one of them needs to call super.collectContributions() . It is
possible to use attributes inside the code blocks to decide when a particular subtree should be searched for contributions.

Rewrites
JastAdd has a mechanism for replacing AST nodes by a rewritten version of the node whenever the node is first accessed. Rewrites are declared
using rewrite rules, described below.

Unconditional rewrite rule

rewrite A {
 to B {
 ...
 return exp;
 }
}

An A node will be replaced by the node specified in the Java expression exp. This will happen as soon as the A node is accessed (by a get() method
from its parent), so if you traverse the tree you will only be able to access the final rewritten nodes.

A and B must be AST classes.

The exp must be of type B.

Let the set S be the superclasses of A (including A) that occur on right-hand sides of productions in the abstract syntax. B must be a subclass of all
classes in S. This guarantees that replacing an A node by a B node does not break the rules in the abstract syntax.

The code in the body of the rewrite may access and rearrange the nodes in the subtree rooted at A, but not any other nodes in the AST.
Furthermore, the code may not have any other side effects.

Conditional rewrite rule

rewrite A {
 when (condition)
 to B {
 ...
 return exp;
 }
}

The conditional rewrite works in the same way as the unconditional one, but performs the replacement only if the boolean expression condition is
true. The condition may access anything in the AST, e.g., attributes, other tree nodes and their attributes, etc.

Iterative rewriting

After a node has been replaced according to a rewrite rule, all conditional rewrite rules are checked again, and a new rewrite may be performed. This
is iterated until no rule conditions hold.

Order of rewriting

At each iteration of rewriting, the rule conditions are evaluated in a certain order. The first condition that is true is used for rewriting in that iteration.
The order in which rule condition evaluation occurs is the following:

conditions in superclasses are evaluated before conditions in subclasses
conditions within an aspect file are evaluated in lexical order
conditions in different aspect files are evaluated in the order the files are listed in the jastadd command.

Confluency

If the order of rewriting of a node does not effect the final result, the rules are said to be confluent. This is highly desirable, since it makes the
specification more readable to not have to take lexical order of rules into account. However, JastAdd cannot check that the rules are confluent. In
cases where several conditions for a node are true at the same time, we recommend that you contemplate the rules and try to find out if they could
be non-confluent. In that case, we recommend you to refine the conditions so that only one can apply at a time. This makes your specification
independent of lexical order. Note that it is often useful to have several different rules that apply at the same time for a given node, but which are
confluent.

Shorthand notation

If you have several conditional rewrite rules, you may write them inside the same rewrite block. So, e.g., writing

rewrite A {
 when (condition-1)
 to B {
 ...
 return exp-1
 }
 when (condition-2)
 to C {
 ...
 return exp-2
 }
}

... is equivalent to:

rewrite A {
 when condition-1
 to B {
 ...
 return exp-1
 }
}
rewrite A {
 when condition-2
 to C {
 ...
 return exp-2
 }
}

2017-10-15 18)36JastAdd.org

Sida 12 av 12http://jastadd.org/web/documentation/reference-manual.php

Sometimes you don't need a block for computing the resulting node. It may be sufficient with an expression. In that case, you may simply write the
expression instead of the block, e.g., as follows:

rewrite A {
 when (condition-1)
 to B exp-1
 when (condition-2)
 to C exp-2
}

... which is equivalent to:

rewrite A {
 when (condition-1)
 to B { return exp-1 }
 when (condition-2)
 to C { return exp-2 }
}

Running JastAdd from the command line
Synopsis

java -jar jastadd2.jar [options] <source files>

Source file arguments are names of .ast , .jrag and .jadd files. At least one .ast file must be provided, otherwise JastAdd will not
generate any code. Some of the available options are listed below.

Options

More details about JastAdd options can be printed by passing the --help option to JastAdd.

Here is a short summary of available options:

Option Purpose
--help Prints help text and stops.
--version Prints version information and stops.
--package=PPP Optional package for generated files, default is none.
--o=DDD Optional base output directory, default is current directory.
--beaver Use beaver base node.
--jjtree Use jjtree base node, this requires --grammar to be set.
--grammar=GGG The parser for the grammar is called GGG, required when using jjtree.
--rewrite=regular Enable ReRAGs support.
--visitCheck=false Disable circularity check for attributes.
--cacheCycle=false Disable cache cyle optimization for circular attributes.
--safeLazy Makes non-circular lazy attributes safe to use in circular evaluations.

Example

The following command generates classes according to the AST description in Toy.ast . The generated classes are placed in the package ast .
The specifications in the Jrag and Jadd files are translated and woven into the generated classes.

java -jar jastadd2.jar --package=ast Toy.ast \
 NameAnalysis.jrag TypeAnalysis.jrag PrettyPrinter.jadd

ANT task

The options above are also available in an ANT task. The names for the options are the same as above, and for flag options like --beaver you
specify beaver="true" , for other multi-value options you specify the option value you want, for example grammar="GGG" as above.

