
Knowledge Graph from Swedish Wikipedia

Vanja Tufvesson
LTH, Lund University

Lund, Sweden
pi08vt1@student.lth.se

Thomas Hassan Resa
LTH, Lund University

Lund, Sweden
atf09tha@student.lu.se

Abstract

A question answering system was devel-
oped based on the answers from the game
”Kvitt eller Dubbelt”. The information
was extracted, based on the answers, from
Swedish Wikipeda and processed using
powerful tools. The resulting system could
take a query, search through a knowledge
graph and present relevant results. The
coverage of named entites from the ques-
tion and the answer was not very high.

1 Introduction

Inspired by question answering systems like
Google and IBM Watson, we wanted to create a
system that could answer Swedish questions from
the game ”Kvitt eller dubbelt”. Starting from
the answer to a question, can we extract informa-
tion from Wikipedia that would contain the ques-
tion in ”Kvitt eller dubbelt”? In order to answer
this question, we downloaded a dump of Swedish
Wikipedia and used multiple freely available tools
to extract the relevant content, tag, parse it and fi-
nally build a searchable knowledge graph.

2 Previous work

2.1 Watson

Watson (Ferrucci, 2012) is a question answering
computer system developed by IBM. It was specif-
ically developed to be able to answer questions
on the quiz show Jeopardy. In 2011, the system
beat the two highest ranked players in a Jeop-
ardy match. (Alpman, 2014) The system relies
on natural language processing, information re-
trieval, knowledge representation, automated rea-
soning and machine learning technologies.

IBM continues to invest in the super computer
system, in order for it to delve into medical records
and help doctors find the right diagnosis for their

patients. The system is also being tested for cus-
tomer service usage at companies.

2.2 Google Info Box

Google has started to structure some of the large
amounts of data on the web. The search engine is
now working as an informative, semantic search
engine, providing an information box, instead of
just links, as the result of a search query. The type
of information varies but it usually contains some
Wikipedia content. It can also contain a picture
and/or a map. The box appears for querys like
actors, artists, places and also for questions like
”what is the highest mountain in the world”. (Par-
feni, 2012)

3 Pipeline

The project descirbed takes a wikipedia dump and
produces a knowledge graph from specific named
entities. The entire project is coded in Java 1.7
and uses several open-source applications to ex-
tract the contents from wikipedia and then present
it in a web browser.

3.1 Index Creation

An index was built using a wikipedia dump and
Apache Lucene.

3.1.1 Wikipedia content
The first step in order to create an index of the
Swedish Wikipedia content was to download a
text dump of the Swedish version of Wikipedia.
The downloaded dump (Wikipedia dump, 2013)
was all with all pages, current versions only from
2013-11-01. This dump was the latest found when
the project was started. The number of articles
on Swedish wikipedia has incresed with almost
67 % during 2013 and with a larger corpus would
hopefully result in a larger knowledge graph. This
dump contained XML-markup and this was re-



moved using Wikipedia Extractor (Wikipedia Ex-
tractor, 2014).

3.2 Lucene

An index was built using the open source library
Apache Lucene (Apache Lucene, 4.6.0). Lucene
is a text search engine library which uses ranked
searching. Starting from the Lucene demos it was
fairly straight forward to go through the contents
of the Wikipedia dump and build the index.

3.3 Part of Speech Tagging

To reduce the size of the problem we only fo-
cused on cards with single word answers, which
were named entities. To extract those named en-
tities the first step was to tag the text content of
the cards with their corresponding Part of Speech
tag. We used Stagger - Stockholm Tagger (Stag-
ger, ) for the tagging since it was already trained
for the Swedish language. Then we extracted all
the named entities from the answers.

3.4 Index Search

In the next step we extracted relevant sentences for
each named entity from the Lucene index. Just like
the indexing, searching the Lucene index was also
straight forward, starting from the demo code. The
matching search results were tagged with their part
of speech tags using Stagger and written to disk.

3.5 Triplets Creation

To create the subject-object-verb triplets, the next
step was to create a dependency graph from the
tagged results. This was done to extract knowl-
edge from text to triplets.

3.5.1 Dependency Parsing

The tagged search results file was parsed us-
ing MaltParser (MaltParser, 1.7.2), a dependency
parser developed at Vxj University and Uppsala
University, Sweden. The parsing methodology is
based on deterministic parsing for building labeled
dependency graphs, history-based models for pre-
dicting the next parser action at nondeterministic
choice points and discriminative learning to map
histories to parser actions.

Maltparser came with a few different pre-
trained models. We used the Swedish model
which was trained on the Swedish treebank Tal-
banken05.

3.5.2 Subject-Object-Verb triplets

From the dependency graph, we could excract
triplets by looking through each sentence for dif-
ferent objects that were related to the same head.
The subjects and objects and their realtionships
were easy to identify by looking at the dependency
graph created in the previous step.

3.6 Graph Storage

The triples extracted from the the corpus
was stored with the help of OpenRDF
Sesame (Sesame, 2.7.8). A main memory
repository was created to store the triples. The
reason why a main memory repository was used
was because it was faster then having an online
repository. Sesame’s Java API was easy to use and
uses the SPARQL language to query the graph.

4 Results

This section contains both the web interface which
can query the knowledge graph and an evaluation
of the coverage of the knowledge graph.

4.1 The webinterface

The web interface was constructed with Apache
Tomcat (Tomcat, 7.0.42) and the Java Servlet API.
It is a basic html page where the user can input a
named entity and press search. This will display
all the triples containing that named entity both as
a subject and as an object. An example query of
”Stockholm” is shown in figure 1.

Figure 1: A screenshot of the web interface.



The highligthed text in figure 1 says: ”sverige
är stockholms huvudstad”.

4.2 Evaluating the knowledge graph
In an attempt to evaluate how much knowledgde
that was extracted from wikipedia, the questions
and answers from ”Kvitt eller Dubbelt” were used.
For every question and answer the named entities
were extracted. Then if both the question and an-
swer had named enitites (one or many) the knowl-
edge graph was searched to see if these named en-
tites had a link. If they had a link it counted as a
hit and thereby it was possible to see how many
questions that could be answered with the created
knowledge graph.

The result is found in table 1:

Number Of Hits: 116.0
Total Number: 325.0
Procent coverage: 0.357

Table 1: The coverage of how many questions that
could be answered by the knowledge graph.

This means that this project was able to extract
the information needed to answer around 36 % of
the questions were a named entity was the answer.

5 Discussion

There are several reasons why this knowledge
graph obtained such a low procent coverage.

5.1 Creation of triples
When paragraphs were extracted from wikipedia
regarding a certain named entity. All sentences
were scanned according to the subject-verb-object
and if these did not exist the triple were never cre-
ated. So all of the facts found in a Wikipedia fact
box are lost since those texts do not contain verbs.

Another problem is that in paragraphs we do not
replace the pronouns with a previous named entity
and thereby a lot of information is lost. Example
sentence: ”Marko Lehtosalo fddes i Finland. Han
gick i Myrsjskolan frn frsta till nionde klass.” It
would have been smarter to replace the pronoun
”han” with the named entity ”Marko ”Lehtosalo”.

The previous example also takes up another
problem were our search of paragraphs will not
find the named entity ”Marko Lehtosalo” since we
are searching for named entiteis found in answers
of ”Kvitt eller Dubbelt” and named entity there is
called ”Markoolio”.

5.2 Limitations of Swedish Wikipedia
Swedish Wikipedia is not as progressive as the
Enlish Wikipedia. Swedish wikipedia has got 1
million articles and English has got 4.5 million.
Also the information found on Swedish Wikipedia
is not as elaborated as it is on the English coun-
terpart. For example there is no wikipedia arti-
cle on Jasmine (the disney princess) on Swedish
Wikipedia (2014-01-13).

6 Possible improvements

This project was limited to only single worded
named entites and it would yield a larger knowl-
edge graph with named entites larger than one
word.

To get better results with the present evaluation
method the triples should have been created by
looking at named entities in the sentence. These
named entities should then be linked with an ap-
propriate link for example the noun or verb. Ex-
ample ”Stockholm är Sveriges huvudstad.” take
the two named entites and link them with the noun.

References
Ferrucci, D.A., IBM Journal of Research and Develop-

ment (Volume:56 , Issue: 3.4.), 2012.

NyTeknik, Marie Alpman
http://www.nyteknik.se/nyheter/it_
telekom/datorer/article3796685.ece
10 januari 2014

Softpedia, Lucian Parfeni
http://news.softpedia.com/news/
Google-Testing-Semantic-Search-Engines-Which
-Provides-Answers-Not-Links-268645.
shtml
10 Januari 2014

MaltParser 1.7.2
http://www.maltparser.org/
13 Januari 2014

Lucene 4.6.0
http://lucene.apache.org/
13 Januari 2014

Sesame 2.7.8
http://www.openrdf.org/
13 Januari 2014

Stagger
http://www.ling.su.se/
english/nlp/tools/stagger/
stagger-the-stockholm-tagger-1.
98986
13 Januari 2014



Tomcat 7.0.42
http://tomcat.apache.org/
13 Januari 2014

Wikipedia dump
http://dumps.wikimedia.
org/svwiki/20131101/
svwiki-20131101-pages-meta-current.
xml.bz2
13 Januari 2014

Wikipedia Extractor
http://medialab.di.unipi.it/wiki/
Wikipedia_Extractor
13 Januari 2014


