
Towards a Swedish knowledge graph

Alfred Åkesson
ada10aak@student.lu.se

Jens Gustafsson
ada10jgu@student.lu.se

Victor Rugarn Strömberg
ada10vru@student.lu.se

Abstract

In this report, we present a way to extract
data from the info-boxes in the Swedish
Wikipedia. Our focus have been twofold.
First of all, we have focused on the extrac-
tion of time-expressions, but we have built
a system which can be extended for ex-
traction of any property in the info-boxes.
We have also started the work on an au-
tomatic ontology builder, since we found
out that many properties in the info-boxes
described the same thing.

1 Introduction

RDF is a standard model for structuring informa-
tion on the web. It can be used to store triples
of subject-predicate-object and link these between
different sites, creating the semantic web.1

Wikipedia contains a huge amount of informa-
tion and therefore several knowledge bases have
been based on Wikipedia. Many of these knowl-
edge bases are based on the English Wikipedia and
very few are based on the Swedish Wikipedia. The
only Swedish knowledge base we are aware of is
the Knowledge Graph created by Google.2

Example of successful English knowledge
bases, except from the knowledge graph created
by Google, are DBpedia and YAGO2, which we
will discuss more deeply in section 2.

The extraction framework used by DBpedia on
the English Wikipedia has also been used on the
Swedish Wikipedia. Sadly, the framework is not
tailored for the Swedish Wikipedia, meaning that
many properties, especially language- and region
specific properties were incorrectly extracted. The
reason to this is many. One of them being the rules

1http://www.w3.org/RDF/
2http://www.google.com/insidesearch/features/search

/knowledge.html

for extraction witch are based on the English lan-
guage and it is therefore unlikely to be able to ex-
tract data from the Swedish Wikipedia. Another
reason is the representations. In Swedish these do
not always match the representations in English.
An example of this is the time representation. In
Swedish the 24 hour time notation is used, while in
the English language the AM-PM system is used.
As seen, if the English time representation is used
to parse a time in Swedish, it will most likely fail,
the parser will at least not be able to parse any time
expression which expresses the clock being past
twelve (12 AM).

Wikipedia is open for anyone, meaning any-
body can edit an existing article or create a new
one. In Wikipedia, there exist no text-formatting
rules, which means that the raw data of an article
can vary, this forced us to create a system which
can parse a wide range of different forms of for-
matted text. Nor are there any specific rules to
follow when creating a property, this means that
many different strings can be used to represent the
same property in an info-box in Wikipedia. It was
because of this, we found the need for an ontology
for the Swedish Wikipedia, since it would result in
an easier way of extracting the data.

A lot of work has been done in the creation
of DBpedia’s ontology, therefore our idea is to
use their ontology in order to automatically cre-
ate an ontology that can be used for the Swedish
Wikipedia.

Our date extraction proved to be very accurate
in our tests. The system measured an accuracy of
100%. We have not found any serious attempts
to do the same thing for the Swedish Wikipedia
to compare with. Our automatic ontology system
got a recall of 80% and a precision of 93%. By
comparing this to [6], who got a recall of f79%
and precision of 87%, one can see that this is an
improvement of prior results.



2 Related work

2.1 DBpedia

DBpedia is a large-scale, multilingual knowledge
base, which focuses on extracting structured infor-
mation from Wikipedia in 111 different languages
[4], and mapping these as RDF triples.

When extracting data, DBpedia uses two extrac-
tion methods: generic-based and mapping-based
info-box extraction [1]. The generic-based extrac-
tion aims at achieving a wide coverage of proper-
ties, while the goal of the mapping-based extrac-
tion is to extract high quality data.

In the mapping-based extraction, strings in the
info-boxes describing the same type of things are
chunked together and considered to be the same
property. This removes a lot of redundancy and
makes the database easier to query. In order for
DBpedia to do this, they manually mapped the 350
most common templates in Wikipedia to an ontol-
ogy. This resulted in an ontology of classes, which
contains 720 different properties [1].

2.2 YAGO2

YAGO2 is another example of a semantic knowl-
edge base that is derived from Wikipedia. In ad-
dition to the RDF-triple, YAGO2 uses three more
dimensions to describe the extracted data. Those
dimensions are a geographical, a temporal and a
keyword dimension [3]. The dimensions are rep-
resented by tags. This means that if a triple de-
scribes something which existed during a specific
time period, the triple can be tagged with the tags
startsExistingOnDate and endsExistingAtDate.

YAGO2 is based on its predecessor, YAGO and
has been built with help of the taxonomy of Word-
Net, a lexical database, and by the use of about 100
manually defined relations. A lot of the extrac-
tions of the data from the info-boxes in Wikipedia
are done with the help of regular expressions, i.e.,
if some part of the source text matches a specific
pattern, a specific fact is extracted from the text.
This is the same method we uses when we are ex-
tracting data from the info-boxes in our system.

2.3 Ontology matching

Exner and Nugues presented in 2012 a system
which can be used for extraction of triples in the
running text of Wikipedia articles [5].

They annotate each sentence in a Wikipedia
article with predicate-argument-structures. From

these structures, they generate all possible subject-
predicate-object-triples. The subject and object in
each triple is then matched against the existing
triples in DBpedia, and if any predicate is found,
they match the found predicate with the parsed
one.

From here, they select the most matched
predicate-pairs and consider them to be equal.
This gives them the ability to then create new non-
existing triples in DBpedia from the running text
of the Wikipedia articles.

2.4 Automatic refining of the Wikipedia
property-ontology

In a report written by Weld and Wu [6], a method
to automatically refine the Wikipedia info-box on-
tology is described. In their system, they make
use of the edit-history in the source code of a
Wikipedia article.

Their idea (slightly simplified) is the following:
If a string describing a specific property has been
replaced with another string, and still has the same
value, then it is likely that those two strings should
be considered to describe the same thing. There-
fore, they map all such strings to one single prop-
erty in the Wikipedia ontology. Another refining
method they use, is to look for attributes which are
never used together in a template. If they never are
used together, it is likely they describe the same
property and are therefore considered to be equal.
A third way they use to improve the ontology is
to remove tailing numbers or other simple muta-
tions of a string describing a property. In section
2, we will compare the results of our automatic
property-ontology matcher with the results from
this system.

2.5 Summary of related work

Our long term-goal is to create, or help others to
create, a Swedish knowledge base similar to DB-
pedia and YAGO2. In order to achieve this, we
must have an ontology that describes the relation-
ships in the graphs. Therefore, we have used the
two reports, described in section 2.3 and 2.4, to get
inspiration for our work. We used the ideas about
automatic ontology refining, described in 2.4 and
used the idea about incorporate DBpedia in our
ontology matching, described in 2.3.



3 Method

Before starting this section, we want to give you a
short definition of four words, which will be used
several times during the rest of this report. You
can find the definition of each word in table 1.

Word Meaning
Article A Wikipedia article
Property The name of a property in an info-

box in an article
Value The value of the property in an info-

box
Context All triples having the same type of

article and type of value are consid-
ered to be in the same context

Table 1: Definition of common words in this arti-
cle.

3.1 Applications used
We have used several different applications in the
creation of this system. The following is a list of
some of the applications/tools that we have used,
which deserves a further explanation:

• Bliki Wikipedia Parsing Library

• Sweble

• OpenRDF - Sesame

The bliki engine is an XML-parser3, which we
are using in our system to parse XML-dumps
of Wikipedia. Sweble is a mediawiki parser [2]
which we have used in our system to parse and
build an AST-tree of each Wikipedia article, such
that we more easily can extract information from
the info-boxes in Wikipedia. OpenRDF Sesame is
a framework for processing RDF data4, we are us-
ing Sesame in order to save our extracted triples
and query them using SPARQL.

3.2 Proceedings
Our system can extract any type of property from
an info-box. However, we have only implemented
the extraction of properties describing when some-
one was born. In 3.2.2 we will give a description
of how our date-extraction system works. In the
section after that, section 3.2.3, we will give you a
description of our ontology matcher works. But

3https://code.google.com/p/gwtwiki/
4www.openrdf.org

before we start those sections we will give you
a general picture of how our system works, de-
scribed in section 3.2.1.

3.2.1 General Overview
First of all, we download a XML-dump of all the
existing articles in the Swedish Wikipedia. We
then use Bliki to extract each article as a text-
string. We send this text-string in to Sweble and
get an AST-tree5 representation as output of the
text-string. By traversing the tree, we can find the
info-box, if there is any, from where we can extract
the existing properties. To find a specific property
and value in the tree, we are using regular expres-
sions. Figure 1 describes the different steps in our
system.

Figure 1: A picture describing how our system
works

3.2.2 Date Matching
As mentioned in the introduction, a date can be
represented in many different ways. Therefore,
the first thing we did when we started our work
on a date extraction was to decide how to rep-
resent the extracted dates. We choose to follow
the XSD Date and Time Data Types, described by
W3C6. Therefore, we save the extracted dates in
the formats; Year-Month-Day (YYYY-MM-DD),
Year-Month (YYYY-MM) and Year (YYYY), de-
pending on how much information about the date
we can extract.

As we just said, a date can be represented in
many different ways, and therefore we had to cre-
ate several regular expressions in order to be able
to parse as many dates as possible. The most com-
mon date representations are given in table 2.

To find out what regular expressions to use, a
lot of manually work had to be done. By look-
ing in the source code of several different articles,
we could find out what different ways date could

5Abstract-Syntax-Tree
6http://www.w3.org/TR/xmlschema11-2/



Date expressions
Year (YYYY)
Year-Month-Day (YYYY-MM-DD)
Day-Month-Year (DD-Month-YYYY)

Table 2: A description of the most common date-
representations in the Swedish Wikipedia.

be represented in Wikipedia, and write regular ex-
pressions for these representations. Table 3 show
the most common property used to describe when
someone is born .

Common strings
Födelsedatum
Födelseår
Född
Född datum
Född år
Fdatum
föd

Table 3: A description of the most common strings
used in the source-code of Swedish Wikipedia ar-
ticles to describe when someone was born.

3.2.3 Ontology Matching
Figure 2 gives a general description of this part
of the system. To create our ontology matcher,
we used Sweble to extract all the properties in
the info-boxes in Wikipedia which we temporarily
saved in a SQLite database. After this, we started
what we call the cleaning process. In this process,
we removed all the triples which did not have a
value linked to another article.

In Wikipedia articles often exist in many dif-
ferent languages and they are therefore linked to-
gether. DBpedia has extracted this interlinking
data and that is something we took advantage of.
We translated all the links in our database to the
corresponding name in the English DBpedia.

The next step involves looking up the type of
each article (subject) and value (object) in each
triple and creating new triples which we saved to
a file.

The new triples we created had the following
shape: (Type of Subject, Predicate(Property in
Swedish), Type of Object). As described in the
definition, we consider all the new triples hav-
ing the same subject and predicate to be in the
same context. Here is an example of one of the

Figure 2: A figure describing our ontology
matcher

triples we created: (dbpedia.org/ontology/Place,
kommun, dbpedia.org/ontology/PopulatedPlace)

When this step was accomplished, we uploaded
the file to Sesame. Finally, we calculated the edit
distance between all properties in the same context
and all properties which had an edit distance below
a specific threshold where clustered together.

4 Results

4.1 Results: Date matching
To evaluate the date matching we selected 50 ar-
ticles of persons at random that contained an info
box containing a birth date. We then compared
what we had in our system with the actual value
of the birth date in the article. Of the 50 random
articles, all dates were correctly extracted. If we
look at the Swedish DBpedia we can see that date
results are not comparable, for example:

<http://sv.dbpedia.org/resource/Astrid Lindgren>

<http://sv.dbpedia.org/property/föddDatum>

<http://www.w3.org/2001/XMLSchema#integer>

4.2 Results: Automatic ontology
In order to evaluate the system, we have chosen
three different contexts. The contexts we have
chosen are the following:

• Place - Place

• Person - Time period

• Organization - Organization

In table 4 we show our selection of results
we got for a system in different contexts. In
the context Place-Place one can see that the two
words stat, ‘state’ in English and stad, ‘city’ in
english, have been chunked together, even though
the meaning of the words are different. This is
a problem with our system. Two properties that



Subject Predicate Object

dbpedia.org/ontology/Place

högsta punkt (highest point)
högstapunkt (highest point)
hogstapunkt (highest point)
state
state4
state5
state2
state3
state1
stat (state)
stad (city)
Störstastad (largest city)
största stad (largest city)
störstastad (largest city)

dbpedia.org/ontology/Place

dbpedia.org/ontology/Person

efterträdare (successor)
efterträdare2 (successor)
maka (wife)
make (husband)
grundat (based)
grundad (based)

dbpedia.org/ontology/
TimePeriod

dbpedia.org/ontology/
Organisation

Gick upp i (merge)
gick upp i (merge)
kammare2 (chamber)
kammare1 (chamber)
internationell (international)
internationellt (international)

dbpedia.org/ontology/
Organisation

Table 4: An selection of groupings when we used normal edit distance. Threshold 1.

have different meaning but are lexically very sim-
ilar in the same context is not possible to differen-
tiate from each other. However, if the contexts are
different, it is possible to distinguish between the
two words, this is due to the fact that we do not
even try to match similar properties from different
contexts together.

In the context of Person-TimePeriod one of
the chunks extracted contained the two properties
“make” and “maka”, which in English translates
to spouse(male and female). Depending on what
you want to achieve with the reduction, this reduc-
tion can be seen as both successful and unsuccess-
ful. Successful, because it was possible to map
“make” and “maka” to mean the same thing, and
unsuccessful if one do not want to consider those
words to be the same. We consider those words to
be the same and would in our ontology map these
two strings with the property “gift med”, married
to, spouse.

Our system detects some inflections in the case
of “grundat” and “grundad” and “internationell”
and “internationellt”. In table 5, the first row
shows how large percentage of the predicates that
our system reduced to another previous predicate.
On the second row we show the same thing in ac-
tual numbers. The third row show how many of
the chunks that contained false positives in rela-
tion to how many chunks there were containing
more than one predicate.

In table 5 we see for the context Organization
- Organization, we only reduced the context with
11 %. However, we obtained zero false positives.
By manually going through the 119 properties in
this context we concluded that a reason to why the
reduction was smaller was due to the fact that the
properties differed quite a lot from each other.

4.3 Evaluation

To get a picture of how accurate our automatic
matching is, we have to compare it to a manual



Place and Place Person and
TimePeriod

Organisation and
Organisation

Reduced in percent 38 % 36 % 11 %
Reduced in number 118 of 310 36 of 101 13 of 119
Number of chunks larger than
size one containing false posi-
tives

3 of 37 1 of 14 0 of 9

Table 5: Reductions and false positives

matching. Therefore, we chose to make a manual
matching of one of the contexts. The context we
chose was Person - Time period.

In this context, we managed to create 13 differ-
ent chunks, while our automatic matcher created
14 chunks. Even though we did not extract the
same number of chunks, the computer extracted
the same chunks as we did. This means that there
was only one chunk that the computer faulty cre-
ated. The chunk the computer created which we
did not was “Datum – fdatum”, which in english
means “date - bdate”, where b means born.

9 of the chunks the computer created contained
the exact same properties as our manually chunk-
ing did. This means that 9 out of 14 chunks the
computer extracted were equal to the chunks we
manually created. One of the chunks was 90 %
equal to the chunk manually created, two of the
chunks were 66 % equal and one 33 %.

Our manually reduction resulted in 36 reduc-
tions. Out of these, our system, made 29 correct
reductions. This gave us a recall of 80 %, com-
pared to [6] 79 %. If we sum the false positive
in the reduction we get a precision of 93 %, com-
pared to 87 % from [6].

5 Conclusion

The only Swedish knowledge base of today, which
we are aware of and is accurate enough to actu-
ally be useful, is the Knowledge Graph, created by
Google. However, this knowledge base is not pub-
lic available and there exist no information about
how it is created and what it actually contains.
Therefore, we see a need for the development of a
Swedish open knowledge base, and we like to be-
lieve that our work can be helpful in the creation
of such a knowledge base.

We have created a date parser, which can parse
when somebody is born with a very high accuracy.
This parser can easily be extended to parse any
kind of date property, for example when some-

one has died and when something has been cre-
ated. Actually, our parser could be extended to
parse other info-box properties as well, though we
have not put any work into it.

Why we chose to focus on date extraction, is
because dates are one of the most complex and re-
gional dependent types of data you want to have
in a knowledge base. Therefore, this work can be
very useful in the creation of a Swedish knowledge
base.

It is important to have a small ontology with not
too many types of relations and where all the rela-
tions are unique. Otherwise it will be hard to use
the knowledge base, since you will have to search
for many types of relations every time you want
to make a query. It is also very time-expensive
to manually search for all the different strings that
are used in Wikipedia to describe the same prop-
erty, therefore, our ontology matching system is a
tool we believe that will be very useful in future
works on Swedish knowledge bases.

6 Future work

6.1 Date of born extraction

We found our date extractor to be very accurate.
Future work will be to extend the system to parse
any kind of dates in an info-box. To be able to
parse dates describing time periods is also a sub-
ject for future work.

6.2 Automatic Ontology Matching

Future work will be to improve the automatic on-
tology algorithm. Some improvements can be to
use a more sophisticated comparison algorithm in-
stead of edit distances, e.g, using morphology and
synonyms. The selection of a context can be auto-
matic for a given predicate and can select a more
unique context, in that way get a smaller selection
of alternatives to chunk. Another thing that can be
done is to try if the value is not a link to another
Wikipedia article, then try parse it as a date, num-



ber, name, enumeration or string to get the type of
more properties. For example population that is
not a property that can be chunked in our system
because the value is a number.

References

[1] Christian Bizer, Jens Lehmann, Georgi Kobi-
larov, Sören Auer, Christian Becker, Richard
Cyganiak, and Sebastian Hellmann. Dbpedia-
a crystallization point for the web of data. Web
Semantics: Science, Services and Agents on
the World Wide Web, 7(3):154–165, 2009.

[2] Hannes Dohrn and Dirk Riehle. Design and
implementation of the sweble wikitext parser:
Unlocking the structure within wikipedia. In
Proceedings of the 7th International Sympo-
sium on Wikis and Open Collaboration, 2011.

[3] Johannes Hoffart, Fabian M Suchanek, Klaus
Berberich, Edwin Lewis-Kelham, Gerard
De Melo, and Gerhard Weikum. Yago2:
exploring and querying world knowledge in
time, space, context, and many languages. In
Proceedings of the 20th international confer-
ence companion on World wide web, pages
229–232. ACM, 2011.

[4] Jens Lehmann, Robert Isele, Max Jakob,
Anja Jentzsch, Dimitris Kontokostas, Pablo N
Mendes, Sebastian Hellmann, Mohamed
Morsey, Patrick van Kleef, Sören Auer, et al.
Dbpedia-a large-scale, multilingual knowl-
edge base extracted from wikipedia. Semantic
Web Journal, 2013.

[5] Nugues Pierre. Ontology matching: from
propbank to dbpedia. 2012.

[6] Fei Wu and Daniel S Weld. Automatically re-
fining the wikipedia infobox ontology. In Pro-
ceedings of the 17th international conference
on World Wide Web, pages 635–644. ACM,
2008.


