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Abstract
This report describes a simple question an-
swering system for Swedish. The sys-
tem includes question analysis, hypothesis
generation and reranking of answers.

The state of the art, question answering
system IBM Watson served as inspiration.
However, instead of Jeopardy! questions
this system was trained and evaluated on
questions from Swedish television quiz
show Kvitt eller Dubbelt - Tiotusenkro-
norsfrågan.

A HTML dump of Swedish Wikipedia was
used as knowledge base. Paragraph re-
trieval from Swedish Wikipedia gives ac-
ceptable coverage of answers when tar-
geting Kvitt eller Dubbelt questions, espe-
cially for single-word answer questions.

The hypothesis generation module re-
produces the results of [J.Pyykkö and
R.Weegar2013] and expands on it. The
question analysis part, developed in col-
laboration with Anders Tilly, performs lex-
ical answer type prediction. Sorting an-
swer candidates according to occurrence
in the most relevant paragraphs gave a
baseline ranking that performed better
than expected. The reranker make use of
information from the previous stages to es-
timate the correctness of the generated an-
swer candidates. The correctness estimate
is then used to re-weight the baseline rank-
ing.

A 5-fold cross-validation showed im-
proved ranking performance compared to
baseline.

1 Introduction

This report describes a simple question answering
system for Swedish. The system includes mod-

ules for question analysis, hypothesis generation
and reranking of answers.

The state of the art, Jeopardy! playing ques-
tion answering system IBM Watson [Gondek et
al.2012] served as main source of inspiration.
However, instead of Jeopardy! questions this sys-
tem was trained and evaluated on questions orig-
inally from the 1950-60s Swedish television quiz
show Kvitt eller Dubbelt - Tiotusenkronorsfrågan
[Kvi2013]. The questions have been transcribed
into RDF graph data locally at Lund Institute of
Technology by previous students.

The free text resource Swedish Wikipedia
[Swe2008] was used as knowledge base. As in-
vestigated by [J.Pyykkö and R.Weegar2013] on
the same corpus of questions, paragraph retrieval
from Swedish Wikipedia gives good coverage of
answers, especially for single answer questions.
For the purpose of answering Kvitt eller Dubbelt
questions using Swedish Wikipedia was deemed
to be the best starting point.

The system aims at answering questions of type
and complexity similar to the Kvitt eller Dubbelt
questions.

The hypothesis generation module reproduces
the results of [J.Pyykkö and R.Weegar2013] and
expands on it. The question analysis part, devel-
oped in collaboration with Anders Tilly, performs
lexical answer type prediction and is responsible
for producing a search query from the question
text. The reranker module make use of informa-
tion from the other modules to estimate the cor-
rectness of the generated answer candidates and
thus create a ranking.

2 Background

As mentioned above the main source of inspira-
tion for this project is IBM Watson. In 2011 IBM
Watson gained fame by beating the two best hu-
man champions in a real-time two-game Jeopardy!
competition [Ferrucci2012]. IBM Watson sets a



high standard and is, at the time of writing, con-
sidered to be the state of the art in question an-
swering.

The IBM Watson system includes, in addition to
its question answering core and the game play im-
plementation, human-computer interaction com-
ponents such as: speech recognition, language in-
terpretation, answer formulation and speech syn-
thesis. In this project the focus is on the question
answering core.

The Watson system takes full advantage of the
Jeopardy! format of questions. For instance in
finding the focus (the part of the question that
refers to the answer) and the LAT (the lexical an-
swer type, which indicates the class of the answer)
in the question analysis. Its question answering
architecture DeepQA is heavily modularized and
allows for multiple implementations that can pro-
duce alternative results. This creates alternative
paths through its pipeline, paths that independent
and can be pursued in parallel [Ferrucci2012].
Many candidate answers can be proposed using
several different search strategies [Chu-Carroll et
al.2012], for example: document search, passage
search, lookup in structured databases with ex-
tracted facts (triples) or using knowledge graphs
such as IBM’s frame database Prismatic [Fan et
al.2012]. This also allows for pursuing different
interpretations of the question and category. More
and more features and evidence is gathered and an-
alyzed for each answer before the final reranking
and narrowing down the answer candidates. Wat-
son can then use the estimated confidence to de-
cide on its Jeopardy game strategy, e.g. whether
or not to answer a question or how much to bet.

This was all done for English. Is it possible to
successfully use similar techniques for a Swedish
question answering system?

In our project however search strategies are re-
stricted to document search over paragraphs and
the design of our system roughly corresponds
to a simplified single path through the Watson
pipeline.

3 Question Corpus

Thanks to previous students a corpus of Swedish
questions from the quiz show Kvitt eller Dubbelt
- Tiotusenkronorsfrågan was available locally at
Lund Institute of Technology.

The question corpus contains 2310 questions.
Out of these 1683 questions are single-word an-

swer questions and most of the answers are nouns.
Because of the Kvitt eller Dubbelt game play the
questions are organized on 385 named cards. The
cards are divided into 7 categories with 6 questions
of different value on each card. Each question
have a question text, an answer, optionally com-
plemented with an alternative answer, and is an-
notated with one of the 9 answer categories listed
in table 1.

In table 2 three example questions is shown.
Note that some fields are sparse and that the cate-
gorization is partly incomplete. The answer cate-
gory for question 3 should, for instance, probably
be marked as a location. The question text in all
the examples are single sentence and so are most
of the question texts. However, question texts
ranging from single noun phrases to multiple sen-
tences occasionally occurs in the corpus.

Table 1

Answer Categories
misc
abrev
action
desc
description
entity
human
location
numeric

Since our objective is not to implement the
game play but simply question answering, we only
make use of the question text, answer, alternative
answer and answer category fields. 1

4 System Description

In the following subsections the system is de-
scribed.

4.1 Overview

Figure 1 illustrates the path from question text to
list of ranked candidate answers.

• Input to the system is a full text question.

1Card category and card name were only used experimen-
tally in the question analysis part when formulating queries,
however in the end only the question text was used to build
queries.



Table 2

Field 1 2 3
value 250 5000 5000
text I vilken

stad
sitter
Sveriges
regering?

Vem är
kapten
på
rymdskep-
pet Mil-
lenium
Falcon?

I vilket
land är
Rom hu-
vudstad?

answer Stockholm Han
Solo

Italien

alt answer - - -
answer
category

location human -

answer
subcate-
gory

- - -

• The Question analysis module predicts an-
swer type using a trained answer type classi-
fier and is responsible for building a search
query.

• The search query is used by the hypothesis
generation to find the most relevant para-
graphs from the indexed free text resources,
in this case Swedish Wikipedia. Candidates
are generated from the retrieved paragraphs.
Associated information that might be useful
in later stages (Part-Of-Speech, dependency
graphs, search score, etc.) stored for each
candidate.

• Candidates are merged on equal lemma (nor-
malized word form), the candidate features
are merged with independent strategies. Fur-
thermore, statistics such as occurrence and
word frequency is computed.

• The question object, predicted answer types
and corresponding estimated probabilities,
the merged candidates with their features and
statistics are sent to the reranker module and
is used by a trained reranker model to create
the final ranking.

• Output from the system is a list of answer
candidates ranked by an estimated confi-
dence.

4.2 Question Analysis

The question analysis module take the question
text as input and is responsible for building a query
for searching paragraphs. For query building only
a few approaches were tested. An experimen-
tal test using the card category (i.e. the question
topic), the answer type and the question text as
query showed only a small gain in the number an-
swerable questions and a drop in the rank of the
first found correct answer, when compared to only
using the question text as query. A question is con-
sidered answerable if the answer is found among
the generated candidates.

Possible improvements or other approaches in-
cludes: generate queries consisting of extracted
keywords only, create a better topic categorization
and train a model for predicting, use more fine-
grained answer types, use more than one query to
generate candidates.

The query is sent to the hypothesis generation
module.

In collaboration with Anders Tilly a LibShort-
Text [Yu et al.2013] logistic regression model pre-
dicting the answer type from question text was
trained and integrated into the question answer-
ing system. Training data could be produced using
answer types and question text available from the
question corpus.

LibShortText is a library for short-text classifi-
cation. It basically implements document search
(short-text as documents) using the vector space
model. LibShortText uses the bag-of-word model
to generate future vectors. We used features repre-
sented as TF-IDF (term frequency - inverse docu-
ment frequency).

LibShortText provides pre-processing in the
form of tokenization, stemming and stop-word re-
moval. It should be noted that the stemming and
stop-word removal is for English and thus of no
use for this project. In our system we instead im-
plemented stemming using Stagger [Östling2013],
and thus added the possibility to use normalized
question text for both training and predicting the
answer type.

From the decision values predicted by LibShort-
Text when using a Logic Regression classifier the
probabilities of each class could also be computed.
This enables us to use more then one answer type.

The top two predicted answer types and their
associated estimated probabilities are predicted by



Figure 1: System Overview

the trained model and then stored in the question
objects for later use in the reranking module.

4.3 Hypothesis Generation

The hypothesis generation component is imple-
mented using paragraph-based search. Other units
of text, e.g. article or sentence, could work as
good. But paragraphs are assumed to give good
performance because they contain strongly related
information, whereas an article may contain unre-
lated information. Using single sentences might
discard some useful information, such as when
corefereneces span multiple sentences. Anyway,
in a larger system multiple search strategies of dif-
ferent granularities and with distinct algorithms
could be used in parallel, see 2.

To make searching the huge amounts of HTML
data, in case of the Swedish Wikipedia about
10GB, feasible the paragraphs were extracted us-
ing JSoup [jso2013] and an index was created us-
ing the search engine library Lucene [Apa2013a]
with html paragraphs as documents (as in the in-
formation retrieval sense). Swedish stemming and
stop words (Swedish Analyser) were used both
when indexing and when querying.

The basics of Lucene scoring can be found in

[Apa2013b] but a summary of the details will
be given here. Lucene combines the Boolean
model of information retrieval with the vector
space model. Work is saved by only applying the
vector space model for document scoring if the
documents are first found by the Boolean model.
By default the Lucene vector space model use TF-
IDF weights. This means a vector V (d) represent-
ing a document d from the set of all documents D
and with entries corresponding to terms t, can be
written as:

V (d) = (vt,d) (1)

vt,d = tft,didft,d (2)

tft,d = (
countd(t)

|d|
)0.5 (3)

idft,d = 1 + log(
|D|

1 + |{d ∈ D : t ∈ d}|
) (4)

where vt,d is an element of V (d), tft,d the
term-frequency and idft,d the inverse document-
frequency.

The vector space model score of document d
for query q is the cosine similarity of the TF-IDF



weighted query vectors V (q) and V (d).

sim(q, d) =
V (q) · V (d)

|V (q)||V (d)|
(5)

Lucene re-weights the cosine similarity for
search quality, usability and efficiency. This leads
to Lucene’s Conceptual scoring formula:

score(q, d) = coord(q, d)qboost(q)

V (q) · V (d)

|V (q)|
norm(d)dboost(d)

where

• norm(d), normalizing V(d) to the unit vec-
tor removes all document length information.
Lucene uses a custom document length nor-
malization factor instead.

• dboost(d), boost the weights on specific doc-
uments.

• qboost(q), boost the weights on specific
query terms

• coord(q, d), reward for documents matching
more query terms, which is usually larger
when more terms are matched.

The hypothesis generation module retrieves the
60 most relevant paragraphs found by searching
using the query from the question analysis. The re-
striction to 60 most relevant paragraphs is made to
keep the system responsive enough for near real-
time performance on an ordinary laptop and is ar-
bitrary.

The free text of the retrieved paragraphs is
processed by POS-tagger and NER (Named En-
tity Recognition) Stagger Stagger [Östling2013]
and dependency parsed with MaltParser [Hall et
al.2013]. The entity types recognized with Stag-
ger is shown in table 3.

Nouns (NN), proper nouns (PM) and named en-
tities are extracted as candidates. Named entities
can consist of multiple words otherwise only sin-
gle word answer candidates are supported. The
candidate generation could be expanded to include
whole noun phrases by applying a chunker on the
sentences.

All information that might be useable for esti-
mating the correctness of each extracted answer
candidate is stored in the candidate objects, see
figure 2. This includes: occurrence, frequency,

Table 3

Entity Types
person
place
inst
work
animal
product
myth
event
other

named entity type, the sentence in which the can-
didate answer occurred in with POS and depen-
dency graph, Lucene score, wikipedia article title,
paragraph text.

Usually a lot of duplicate answer candidates
is generated. That is why candidate merging is
performed. Candidates are simply merged on
equal lemma (case-insensitive). It is possible to
use independent merge strategies for each feature.
For occurrence accumulate could be appropriate.
Keep most relevant named entity type according
to Lucene score. Use or on boolean features to
see if some event occurred at least once. Merging
reduces the number of candidates significantly. Fi-
nally, hypothesis generation gives a list of candi-
dates objects for reranking.

As a consequence of the paragraph search de-
scribed above, candidates equaling the words from
the queries often get both high frequency among
the most relevant paragraphs and high lucene
score. Usually, those answer candidates are in-
correct. A simple stop-word filter removing those
candidates has proved effective. Another ap-
proach that did not show as effective, was adding a
boolean feature for if the word is contained in the
question text or not.

4.4 Reranking

Simply ranking the generated answer candidates
by the occurrence of the candidate answers in the
retrieved 60 most relevant paragraphs proved sur-
prisingly effective and was adopted as baseline.

Inspired by [Chu-Carroll et al.2012] we wanted
to rerank (the process of creating a better ranking
is called Reranking) the answer candidates using
machine learning techniques on the the features
and evidence gathered in previous modules. The



Figure 2: Candidate and Question UML

key idea is to use the question corpus to train a
Logistic Regression model estimating the correct-
ness of an answer candidate.

Features were extracted for each candidate-
question pair. Labels were produced by compar-
ing candidate answer to the known answer. A Lib-
Linear [Fan et al.2008] Logistic Regression model
was trained via the Weka machine learning frame-
work [Hall et al.2009]. Due to the unbalanced na-
ture of the data, only data from questions having
a correct answer was used. Furthermore, the the
number of examples of incorrect answers were re-
stricted and the observations were chosen by uni-
form sampling. Nevertheless, the training data
files ended up ended up with close to 500, 000
lines, each having 24 fields.

In addition to nominal, numerical or binary fea-
tures shown in figure 2 or mentioned elsewhere,
we used a bag of word of lexical features in an
attempt to build a contextual model. The lexi-
cal features were extracted from both the ques-
tion context and the answer candidate context.
Triples, Subject-Verb-Object (SVO) frame projec-
tions, were extracted from the dependency graphs
of the last question text sentence and from the
paragraph sentences containing the candidate an-
swers. Figure 3 shows an example dependency
graph for a corpus question. The first word of the
question sentence were added to the bag of words,
as it is assumed to be important because it is usu-
ally is an interrogative (vem, var, när, etc.) and
thus often say something about the answer type.
For the lexical features a common vocabulary was
built and only the most frequent words where kept
as separate classes. Words not present in the vo-
cabulary is represented with a missing value flag.

Table 4 gives an overview of the features.

Table 4

Type Question Candidate Both
nominal 2 best

answer
types

netype -

numerical 2 best
probabili-
ties

occurrence,
fre-
quency,
lucene
score, #
words in
answer

-

boolean isMulti-
Choice-
Question

isTitle,
isNoun,
isNE, is-
Numeric,
isDate

isWordIn-
Question

lexical first, SVO first, SVO -

The predicted probabilities, or estimated cor-
rectness, from the model was then used to improve
the ranking. Re-weighting the baseline score with
the estimated correctness produced better results
than ranking with it directly. The final reranker
MLReranker re-weights the baseline score with
both the Lucene score and the estimated correct-
ness.

The results of the machine learning reranker
was evaluated by comparing to baseline.

5 Results and Evaluation

The correctness criteria used for candidate an-
swers is case insensitive equality on word form or
on lemma for either the answer or the alternative
answer given by the question. If one of the an-



Figure 3: An example dependency graph for a question from the corpus. The graph shows both depen-
dency relations, lemma and POS tags. In this case the SV O triple is djur brukar kallas.

swer candidates generated for a question fulfills
the correctness criteria the question is considered
answerable.

In order to evaluate the candidate generation we
can look at the paragraph rank histogram normal-
ized by the total number of questions and the cu-
mulative distribution of that histogram, see 4. We
can see that approximately 71 % of the questions
are answerable if retrieving 500 paragraphs and
considering all questions. If considering only the
single-word answer questions up to 80 % of the
questions are answerable.

As we restricted the number of paragraphs in
the hypothesis generation to the 60 most relevant,
we can at most expect that 57 % out of all ques-
tions is answerable and roughly 65 % of the single-
word questions. 2

To evaluate the reranker we look at the distribu-
tions of candidate ranks for the first found correct
answer candidate, figure 5. The candidate ranks
were computed using a 5-fold cross validation, i.e.
dividing the question corpus in 5 parts, training the
reranker model on 4 parts and testing it on 1 part.
Then switching the part being the test set until all
questions have been in tested. 3 The ranks for each
fold were then combined in the same histogram.
The upper plot shows the rank distribution of the
baseline and the lower plot the rank distribution of
the MLReranker. The figure shows that the distri-
bution has shifted to the left in the lower plot, this
means the rank of the first found correct answer
candidate has decreased, which is good. Both the

2The numbers differ slightly from [J.Pyykkö and
R.Weegar2013], explanations for this can be that they used
answer matching in free text as correctness criteria, i.e. not
comparing to the extracted candidates, they used some subset
of the questions. Anyway, all code is different and maybe not
even the wikipedia dumps are the same.

3Note that the answer type prediction model was not part
of the cross validation, i.e. it was trained using all corpus
questions. The evaluation of the reranker can be considered
optimistic or at least under the assumption that answer type
prediction works ideally.

median and the mean has improved when using the
MLReranker. The interpretation of the median is
that: half the first found correct answer candidates
are ranked better then 12 for the MLReranker and
21 for the baseline.

6 Conclusion

It was possible to find answers to a lot of ques-
tion using primarily ordinary search engine tech-
nology. However, those results are like ”needles
in a haystack” [Chu-Carroll et al.2012] and NLP
techniques proved useful to improve the ranking
of the candidates. The 5-fold cross-validation
showed improved ranking performance. If some-
one implemented the Kvitt eller Dubbelt game,
then maybe this system could at least beat a 4-year
old child. But it is no where near becoming the
next Jeopardy! champion.

Smaller gains in performance might gained
form standardization of features, better handling
sparse features, etc. There is probably more room
for improvement in other places.

The lexical answer type is a very strong in-
dicator of the correctness/incorrectness of a can-
didate answer. Using a more fine-grained an-
swer type categorization might give significant
improvements. Especially, if used together with
better type resolution from the candidate answer
side. For the MLReranker only named entities
got a type, but at least Stagger’s named entity
types overlaps slightly (human,location) with the
answer type of the questions. Using a knowledge
graph (dbpedia, yago, etc.) the candidate answer
could find its most popular equivalent representa-
tion through the ”isa”-relation.

Strategic verbs in the question texts can
be identified, for example XwroteY , X =
authorOf(Y ). Then use dbpedia or yago rela-
tions for those. From this we could find proba-
ble answer types and with a knowledge graph also



Figure 4: (u) Distribution of paragraph ranks for first found correct answer candidate. (l) Cumulative
Distribution.

Figure 5: Distribution of candidate ranks for first found correct answer candidate. (u) Baseline (l) MLR-
eranker



generate candidates.
One way to improve performance is to special-

ize. Specialize for example in location questions
and use appropriate resources (geonames, etc.).
Important question classes, for example always
having the same answer type, that are easy to iden-
tify handled as special cases.

As mentioned in section 2, more search strate-
gies could be used. Add document search, maybe
with articles as documents. Add custom simi-
larity measures, for instance distances to ques-
tion words from the location of the answer candi-
date in the paragraph text, other information mea-
sures such as point-wise mutual information. Also
use plain text passage search. Use anchor text
and the title from the wikipedia articles as an-
swer candidates. As in [Chu-Carroll et al.2012]
we can find wikipedia documents with titles con-
tained in the question text, title in clue. Use struc-
tured databases with SVO-triples and other rela-
tions to generate candidates. Create knowledge
graphs such as IBM’s Prismatic and compute ag-
gregate statistics over frames extracted from free
text to assist evidence gathering.

We could link to more external resources and
web services, for example use freebase to infer an-
swer candidate types and to reduce ambiguity or
why not use google to generate candidates.

For questions such as ”Anja Pärson är up-
pvuxen i samma lilla fjällby som bl a Ingemar
Stenmark. Vad heter den?”, coreference solving
for questions could lead to improved performance
by both adding richer context to the question sen-
tence and helping out in finding the lexical answer
type.

Use better context models for question text and
for candidate sentence. One approach for more ro-
bust context modeling is to use word clusters in-
stead of lexical features [Pinchak2006], i.e. create
a vector quantization of words based contextual
features (lexical, POS, dependency grammar). A
word cluster then represent words often appearing
in similar contexts.

More features making use of both question and
candidate context, for instance counting words oc-
curring in both contexts.
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