
Passage retrieval in a question answering system

Juri Pyykk

¨

o

dt07jp0@student.lth.se

Rebecka Weegar

ada09rwe@student.lth.se

Abstract

In this document a system for passage
retrieval in a questioning answering sys-
tem is described, and the result of the
passage retrieval is evaluated. The sys-
tem is designed for Swedish. The corpus
of questions and answers is based on the
Swedish board game Kvitt eller dubbelt,
and as source for passages, the articles of
Swedish Wikipedia have been used. The
tools that mainly have been utilised are
Apache Lucene for indexing and search-
ing and Stagger - The Stockholm Tagger
for part of speech tagging.

1 Credits

This system has been developed during the course
Intelligent systems at LTH as part of the project
Hajen. The questions of Kvitt eller dubbelt have
been transcribed and classified in collaboration
with Cristopher Käck och Robin Leussier under
the supervision of Pierre Nugues.

2 Introduction

This project was designed as part of a question an-
swering system such as the well known IBM Wat-
son, which has served as an inspiration as well.
The purpose of the system is to be able to answer
questions of the Kvitt eller dubbelt game, which
is a Swedish board game, and therefore it is re-
quired that the system supports the Swedish lan-
guage. Beside the questions themselves, the cards
of Kvitt eller dubbelt are also labeled with ques-
tion categories and subcategories, which can be of
use in finding the answer.

A schematic of the complete system is shown in
Figure 1. However, this project was done in isola-
tion from the question processing part and there-
fore required some adjustments to function, these
are described further on. The question processor

will not be discussed to any greater extent in this
paper, only enough to explain its role in the sys-
tem.

3 Question Processing

3.1 General

Given a question, the question processor should
formulate an appropriate search query for the pas-
sage retriever. It should also determine the ques-
tion category. Finally, the processor should also be
able to determine the expected word class/type of
the answer, which is used in the answer extractor.

3.2 Classification

To be able to classify the question and answer
types, various machine learning techniques can be
used. To this end, a training set was constructed in
collaboration with the other participants in project
Hajen who were responsible for the question clas-
sifier.

3.3 Training Set

164
Djur och natur
-
I terrängen
5000
Är en myr ett fuktigt eller torrt område i naturen?
Det är ett fuktigt område
(våtmark)
location

Table 1: Card example.

The questions were transcribed according to the
example shown in Table 1. For each questions,
all the fields except the last one were copied from
its card. While the last field contains the answer
class, which was determined manually. In order



from top to bottom in table 1, the different fields
are described as follows:

• Card number - identifies the card.

• Category - specifies the general theme of the
question.

• Difficulty - can be either ’-’ for normal or ’*’
for easy.

• Subcategory - like category but more specific.

• Points - only used in the actual game of Kvitt
eller dubbelt.

• Question - restricted to the above mentioned
categories.

• Answer - may consist of one word, several
words or numbers.

• Answer explanation - holds any additional in-
formation or alternate phrasing of the answer,
this was not available for most of the ques-
tions.

• Answer class - can be one of the following:
action, binary, description, entity, human, lo-
cation, numeric.

4 Passage Retrieval

4.1 General

The passage retriever’s task is to reduce the
amount of information into a manageable size for
the answer extractor. When provided with a search
query, the retriever proceeds to search for passages
of text that are relevant to the query, and return
these ordered by similarity (see Section 4.3.3). As
mentioned, the question processor was not part of

this project, therefore the search query was not
constructed with keywords as shown in Figure 1,
instead it was formed directly from the training
set. As the training set contained the predeter-
mined question subcategories for each question,
these were used as additional keywords, i.e. the
final query consisted of the entire question in its
original form and the subcategory.

The passage retriever was built upon the ex-
isting functionality that Lucene Core provides.
Lucene Core is an open source, Java-based
project, offering advanced indexing and search ca-
pabilities as well as other utilities.

4.2 Wikipedia

The Wikmedia foundation regularly publishes up-
dated data dumps or snapshots of the entire
Swedish Wikipedia (and other languages) [4],
which made a good source of information for the
passage retriever. The texts within were full of
XML, which could possibly have interfered with
the passage retrieval. By using a certain Python
script [5], all the XML was successfully removed,
leaving all text unmodified.

4.3 Lucene

4.3.1 Indexing

Searching the Wikipedia texts in their original for-
mat would be inefficient, indexing the texts first
circumvents the need to do so. By Indexing the
texts they are divided into smaller segments/units
(called documents in Lucene), after which all
words from the original texts are mapped to sets of
new documents where they now occur. During this
process Lucene also collects information about the
terms and documents, which it then compiles into
statistical data, needed at query time.

Figure 1: Overview



As mentioned, the unit of indexing and search is
called a document in Lucene, the programmer de-
cides what data and how the data is recorded into
these. Since paragraphs were of the main concern
in this case, it was decided that each document
should contain one paragraph each. Throughout
this paper, the words document, passage and para-
graph are used interchangeably.

4.3.2 Searching

The searcher evaluates the similarities, if any, be-
tween the search query and each of the documents
in the database, and then returns the hits ordered
by similarity. A closer match between the search
query and a document will result in a higher simi-
larity score.

4.3.3 Similarity

Lucene uses a combination of the boolean model
and the vector space model of information re-
trieval, and provides several implementations of
different ranking functions. The custom ranking
function that Lucene uses by default is depicted in
Equation 1. The function gives the similarity score
of a document d for the query q, where q can be a
query of several terms/words t. The different com-
ponents of the function are described as follows:

• coord(q,d) - accounts for the Boolean Model
mentioned earlier, and gives a score based on
how many of the query terms were found in
the document.

• queryNorm(q) - allows for comparison of
scores between different queries.

• tf(t,d) - the term frequency.

• idf(t) - the inverse document frequency.

• t.getBoost() - a factor that enables man-
ual boosting (increase relevancy) of specific
terms in the query.

• norm(t,d) - accounts for the varying lengths
of all the documents scored. This component
also includes boosting capabilities, but in this
case for the different fields of a Lucene doc-
ument.

The implementation of tf(t,d) and idf(t) may vary
among different ranking functions. Lucenes de-
fault ranking function implements these as in
Equation 2.

tf(t, d) = f(q, d) idf(t) = 1 + log(
N

df(t)
)

(2)

where f(q,d) is the actual frequency of a term in a
certain document, N is the number of documents
in the collection and df(t) is the number of docu-
ments that contain the term.

4.3.4 Analyzer

The Lucene package includes a wide array of dif-
ferent analyzers to accommodate for word stem-
ming and stop words in different languages. The
analyzers are used both during indexing and
search, and need to be the same in both cases,
i.e. an index created using the Swedish analyzer
must be searched using the Swedish analyzer. In
short, to achieve support for Swedish language,
the Swedish analyzer was used in every instance
throughout the project.

5 Answer Extraction

The answer extractor processes the information re-
trieved by the passage retriever, and attempts to
find candidate answers within. A candidate an-
swer is a word which is of the same type that the
answer is expected to have. The answer extractor
is also responsible for estimating the likelihood of
each candidate answer being the correct answer.

The candidate answers were found by tagging
the retrieved passages, using a Swedish part-of-
speech tagger called Stagger [6]. These were
then ranked according to occurrence (normalized
form). This procedure was based on the assump-
tion that the answer should occur more frequently
than other words, since the passages were re-
trieved by searching for words more closely re-
lated to the answer.

score(q, d) = coord(q, d) · queryNorm(q)
X

t2q
[tf(t, d) · idf(t)2 · t.getBoost() · norm(t, d)] (1)



Figure 2: Percentage of answers found.

6 Results and evaluation

In the first step we used Lucene, as described
above, to extract paragraphs from Wikipedia. As
queries we used the questions of ”Kvitt eller
dubbelt” together with the subcategories of the
question cards. For each of the questions we
checked if its answer was present in the retrieved
text. For this test we used a set of 1374 questions.

In figure 2 the results of this test is presented.
It shows the percentage of answers that were
found for different numbers of paragraphs ex-
tracted. This shows, that when looking only at
the one paragraph with the highest similarity to
the Lucene query, the answer to the original ques-
tion was present in that paragraph for 14 percent
of the questions. For 300 paragraphs, the answer
was found for 74 percent of the questions, and for
even larger amounts of text extracted not much im-
provement was found.

6.1 Matching answers

In this stage of our project, we used a very basic
approach to determine if an answer was present in
a text passage. We checked if the exact string of
the answer was present in the text. An occurrence
of a lowercase version of the string also counted
as a match. No other normalization of the answers
were used in this step.

This simple method for matching answers
meant that some answers were very unlikely to be
found. There are answers within the ”Kvitt eller
dubbelt” game that are in the form of full sen-
tences, and also answers which gives a list of alter-
native answers, and questions of the type: ”name
one of the two”, were both possible answers are
given but either would be correct. To see how
big influence these types of answers had on our
results, we did the same test again, but now only
using questions were the answer consisted of only

Figure 3: Percentage of long and short answers
found.

one word. In figure 3 you can see the frequencies
for found answers. On average, the improvement
is about 10-15 percentage points.

Even with this simplification, there are surely
correct answers that are missed. This limited
matching of answers means that our results de-
scribes a low limit on the actual occurrence of an-
swers that would be considered correct during a
game of ”Kvitt eller dubbelt”. In reality, the num-
ber of correct answers present could be higher.

6.2 Ceiling

One interesting thing to investigate is how many
of the answers to the Kvitt eller dubbelt questions
that are actually present within Wikipedia. This
sets a limit (ceiling) to the results that are possible
for us to find, even if we allowed for the whole of
Wikipedia to be used as our retrieved passage.

We examined this limit for our different tests us-
ing the set of 1374 questions. We found that, when
using questions with full answer (without explana-
tion), the answer was found in Wikipedia for 1238
(90.1%) of the questions. For the 1013 of these
questions that had one word answers the answer
was present in Wikipedia for all but 13 questions,
this means that the answer was found for 98.7%
of these questions. 449 of the questions had the
two properties that the answers consisted of only
one word and that they were classified as entity.
For these, 98.5% of the answers were found. An
answer was considered present if the exact string
of the answer was matched, or if a lower-case ver-
sion of the string is matched. No other stemming
or normalization was used.

The conclusion of this is that no matter how
many paragraphs we would extract, the answers
can not always be found. For questions with full
answers this has a larger influence on the result.



About 10% of the full answers are not present in
Wikipedia. We earlier made the assumption that
one word answers would be easier to find, and the
results for these answers (98.7% found) shows that
that assumption was true. See Figure 4.

Figure 4: Ceiling of answers present in Wikipedia.

6.3 Generating and ranking candidates

The next step was to try to extract candidates for
answers from the retrieved passages. As men-
tioned previously, the text was tagged with part of
speech by Stagger. We limited our search and in-
cluded only questions were the answer had been
classified as entity. We also only used questions
with one word answers to get around the problem
of automatically matching candidates to the cor-
rect answers.

To match the type ”entity”, we considered only
the words in the retrieved passages that were
tagged as nouns as answer candidates. Stagger
also normalized the words, and then the frequency
was counted for each of them. Words with many
occurrences in the retrieved passages were consid-
ered as possible answers.

At first we did a check to see how many correct
answers this method could find for different num-
bers of passages retrieved. The results are shown
in Figure 5. When using 300 paragraphs or more,
about 75 percent of correct answers were found.

Here is an example that explains our method.
First, the question Vad kallas hundens ungar?

(What do you call a baby dog?) is turned into
a Lucene query, and when extracting 150 para-
graphs, 1783 words are returned. These words are
then tagged, and all nouns are selected. The text,
in this case, had 384 different nouns, which were
ordered according to frequency.

Here, the correct (normalized) answer, valp is
present 4 times and gets the rank of 8, it is the 8th
most common noun in the retrieved text.

Figure 5: Found answers among tagged candi-
dates.

This means that the original source of informa-
tion, the articles of Swedish Wikipedia, which has
a size of about 700 MB, is reduced to an ordered
list of 384 words.

In Figure 6, the rank for the correct answers are
shown. Ranking here is strictly based frequency
for each answer, and a high frequency gives a low
rank which means a likely answer.

Figure 6: Ranking of answer candidates.

Figure 6 shows a sort of distribution for the
ranking of candidate answers for different num-
bers of retrieved paragraphs. Each point in the di-
agram means that a certain percentage of the cor-
rect answers were given this rank or a better rank.

When using 50 paragraphs the answer was
found for 57.2 percent of the questions and
the answer was among among the top 100
nouns/candidates for 55 percent of the questions.
If the search was extended to 400 paragraphs, the
answer was found for 75.0 percent of the ques-
tions and the correct answer was among the top
100 nouns/candidates for 41 percent of the ques-
tions. There is a tradeoff between how many para-
graphs that we retrieved and the ranks of the cor-
rect answers. The more paragraphs retrieved, the
more likely it is that the correct answer is found,
but the rank of the correct answer is also lower.



Figure 7: Ranking of answer candidates for found,
correct answers.

The more text extracted in the first step, the more
”garbage” will be found. The extreme would be
to rank all the nouns in the whole Wikipedia, then
the answer would be present with high probability,
but it would be more difficult to find it among all
the extracted words.

This is more clearly visible in figure 7 where
the rank is presented only for the questions where
the correct answer was actually found. Here we
can see that for 150 paragraphs, all answers are
ranked 150 or lower, but for 400 paragraphs, only
66 percent of the answers are ranked 150 or less.

7 Conclusion

During this project we have managed to create a
system that finds and ranks answer candidates for
the questions of Kvitt eller dubbelt. For short an-
swers, we managed to extract passages of text that
contained the answer for 91 percent of the ques-
tions, using Lucene. And for short answers of
type entity, we found and ranked that the correct
answers for 75 percent of the questions. Ranking
was done by using the frequency of the most com-
mon nouns in the retrieved text. Thus, the original
source text of the whole of Swedish Wikipedia was
reduced to a list of ordered words.

It would be possible and maybe even necessary
if one was to develop the project any further, to
consider the long answers as well. To accomo-
date for these one would need to devise some way
of comparing and determining if the answer was
present in a passage of text.

As shown, the answers to most of the questions
were contained in the Wikipedia database, but to
reach 100% the database would have to be ex-
tended with other sources as well.

We have tried some techniques for finding text
passages and extracting answer candidates from

them. In a full scale system, it would be necessary
to improve on the accuracy of the extraction and
ranking, and to take more word classes than nouns
into account. This would have required more ad-
vanced techniques than the ones we used, one ex-
ample would be to utilise named entity recogni-
tion.

References

[1] Murdock et al. (2012) Textual Evidence Gathering

and Analysis, IBM Journal, volume 1, no. 3.

[2] Lin, X. Roth, D. (n.d.) Learning Question Classi-

fiers.

[3] Apache Software Foundation. Apache Lucene.
http://lucene.apache.org/core/

[2013-06-04]

[4] Wikimedia Foundation. Wikipedia. http://

dumps.wikimedia.org/svwiki/latest/

svwiki-latest-pages-articles.xml.

bz2 [2013-06-04]

[5] University of Pisa. Multimedia Laboratory.
Wikipedia Extractor. http://medialab.di.

unipi.it/wiki/Wikipedia_Extractor

[2013-05-23]

[6] Stockholm University. The Department
of Linguistics. Stagger - The Stock-
holm Tagger. http://www.ling.su.

se/english/nlp/tools/stagger/

stagger-the-stockholm-tagger-1.

98986 [2013-05-22].


