Automatic extraction of local events from web sites

Anton Risberg Alakiila

Karl Hedin Sanemyr

Lund University, Faculty of Engineering Lund University, Faculty of Engineering

Computer Science
adal9ari@student.lu.se

Abstract

In this paper the capabilities of automati-
cally extracting information from various
different web sites that lists events are ex-
plored. This will specifically be done in
the context of formatting the scraped data
as RDF, a data format that can be be pro-
cessed directly and indirectly by comput-
ers. Having the data formatted as RDF
further allows for interesting applications
to be built upon - this is something that
also will be explored to some extent in this
paper. In conclusion the benefits of hav-
ing data formatted as RDF are many - this
point will be made throughout the paper.

1 Credits

This project is possible thanks to the effort of
many different people including Pierre Nugues,
the project leader. Hakan Jonsson, stakeholder
from Sony. Tobias Arrskog, Peter Exner & Pe-
ter Norlander, who together with Pierre and Hakan
created the original locevex! project[6]. Finally,
Karl Hedin & Anton Risberg Alakiila, who wrote
the additional code related to this project.

This document was put together by Karl & An-
ton.

2 Introduction

The basis for this project is a master thesis project
(locevex) performed by two students at Lund Uni-
versity, Faculty of Engineering in collaboration
with Sony Mobile (Arrskog and Norlander). One
of the master thesis project goals was to gather in-
formation on the web about events with the use
of software. This concept is commonly known

!The name of the original project this project is based on
is "Hyperlocal Event Extraction of Future Events”. This will
be referred to as "locevex” throughout the document

Computer Science
dt06khl@student.lth.se

as web scraping. The result of the master the-
sis project was a set of web scrapers that could
scrape event data from multiple different websites
and store it formatted as JSON in a CouchDB [2]
database. There was also a small django-based
API in order to access the data and some generic
scraper technology built upon Javascript which
wasn‘t used in this project.

In the spring of 2013 a project was started with
the goal of converting the data coming from the
locevex project into RDF and then make that RDF
data searchable via a SPARQL endpoint. This
could then be used as a knowledge base to build an
applications upon, for instance for smartphones or
PC’s. Such application would be able answer the
questions such as ”what is happening near me in
the near future”.

It was planned that Sindice[5], an organization
that hosts SPARQL endpoints, would collect the
RDF data produced and present it in their own
SPARQL endpoint. Unfortunately due to time
constraints this didnt happen in this project. In-
stead, a small custom SPARQL endpoint was set
up. This will be discussed further later in this pa-
per.

3 Converting to RDF

RDF or Resource Description
Framework is a language which can be used
for describing information in “triples®. Triples in
RDF is information stored in the format:

subject - predicate - object
For example:

Bob - age - 19

Lisa - age - 19

These triples can then be searched with the help
of a query language called SPARQL. In sparql you
can specify what you know and request the holes
in your knowledge filled. You could ask a question
like this:



Who is aged 197
Which in the same format as above is:

? - age - 19
SPARQL will fill in the question mark and return
Bob & Lisa to you.

If you already know that there is a person named
Bob but you don‘t know his age, you could ask
SPARQL something like this:

Bob - age - ?

And SPARQL will return 19. Perhaps you know
that something related to Bob has the value 19, but
you don‘t know what. Then you ask:

Bob - 2 - 19

And SPARQL returns “age”. One of the rea-
sons this project wanted the data in RDF was that
once a SPARQL endpoint was set up a very sim-
ple SPARQL query could perform very complex
tasks. For example, you could have a request like
this:

? - 1s - event
? - starts - today
? - city - Lund

SPARQL would then fill in the question marks
with all events that are today in Lund (or another
city of your choosing). This is just pseudo code,
but the actual query can be written in less than 10
lines of code. This is a very powerful tool! With
this you could build an application for searching
events and make the search part complex without
much effort on your side.

RDF can be written in multiple ways. It has
multiple ”’syntax notations”, each with their own
strengths and weaknesses. Since the data is go-
ing to end up at Sindice, they got to choose which
particular syntax that was going to be used in this
project. They chose “Turtle” syntax. One of the
strengths of Turtle syntax is that it‘s quite easy to
read so the choice was welcomed while the system
was being developed.

Now, on to the RDF conversion. All the data
from the scrapers was available in a CouchDB
database. A CouchDB database can, as it turns
out, quite easily be dumped to a json file with a
small shell script. That takes CouchDB out of the
picture. Now, the problem is getting JSON data to
RDFE.

Parsing JSON with java is quite easy using the
official JSON classes[4]. Writing to RDF is a bit
trickier. In this project Apache Jena[3] was used.
Apache Jena is, as stated on it’s official web page:

113

. a Java framework for building Se-

mantic Web applications*

One part of this framework is a RDF parser and
writer. Unfortunately it isn‘t widely used, so there
is very limited support on the web when the in-
evitable issues appear. This was somewhat solved
due to the fact that the project is open source, so
whenever code didn‘t work the way you expected
it to you could easily look up why. When it comes
to the file format (Turtle/RDF) there is a massive
amount of resources online for validating docu-
ments, examples files, forum discussions etc. so
validating the output of Apache Jena was no issue.

While writing this RDF converter the challenge
wasn’t only to convert the data. It was also making
sure that the converted data was kept up to date. If
a certain event changed time, location, or maybe
even was cancelled the converted data should re-
flect that. This was solved by the RDF converter
always keeping track of what the CouchDB dump
looked like the previous time the program ran.
It could then with these two dumps classify all
events into one of the four categories:

1. New. This event hasn‘t been seen before.

2. Changed. The event exists in the previous
dump but with different values.

3. Removed. The event has disappeared.

4. Not changed. The event exists in the previ-
ous dump and is exactly the same.

Then depending on the class, the event was either
added to a new file, modified in an existing file or
nothing was done to it at all.

The converted files were put in a directory and
later served to the web using apache directory list-
ing.

4 Scraper improvements

After the RDF Converter was done it’s output
was further inspected. At this time some prob-
lems were discovered with the scrapers. One of
the problems was that the event descriptions was
sometimes short and even missing. The reason
for this was that the descriptions were scraped
from the search result page where the informa-
tion was sometimes sparse. When looking fur-
ther into each event‘s dedicated page there was a
lot more information available. The scraping was
therefore altered to scrape event information from



each event‘s dedicated page in addition to just the
search result page.

Another problem that got discovered was that
only <30% of the events got scraped. When look-
ing further into this it turned out that the geocod-
ing, the transformation of an address into geo co-
ordinates, was written in a way that threw away
events that would not get successfully geocoded.
To deal with this the same approach as with ded-
icated event pages was used. Some sites hosted
dedicated place pages where richer data about the
location address was available which then was
used instead of the search result page information.
This improvement resulted in that roughly 80% of
the events got correctly geocoded.

Having geo coordinates for a place is preferable
since it allows filtering events in a certain area.
When looking into the cases where the geocoding
failed it turned out that the authors of the event
pages had inputted inconsistent address descrip-
tions and sometimes even complete walking di-
rections. Transforming these into geo coordinates
would require sophisticated techniques in order to
translate such information into an address. The
rule of throwing away events that would not get
correctly geocoded was dropped - in those cases
the event would be kept but it would lack the co-
ordinates. The reason for this is that it could still
be of interest to search for a string within a place
name.

The scraper with the most problems of them all
was the one for lund.se. The main problem with
was that lund.se had moved all of their events to
a new page; visitlund.se. This page was built en-
tirely differently compared to lund.se, so the old
scraper couldn‘t be used at all anymore. An en-
tirely new scraper was built from scratch for vis-
itlund.se. It used the same method discussed ear-
lier of visiting events dedicated subpage for more
information. Once completed, the scraper for vis-
itlund became the most important one. Now, 60%
of all events come from that page. And as in al-
most all kinds of Al, more data is always good.

4.1 SPARQL Endpoint

To make it possible to answer the example ques-
tion mentioned in the introduction - “What is hap-
pening near me in the near future?” - a SPARQL
endpoint was needed. By this point, the plan was
that Sindice‘s SPARQL endpoint would be up and
running so it could be queried for events. Unfortu-

nately they were not ready so another (temporary)
solution was needed.

It turns out that the Apache Jena library that was
used for reading and writing RDF also contained
a SPARQL processor called ARQ. It‘s capabilities
was explored and it was determined sufficient as a
temporary solution.

In order to be able to input the queries in an
easily accessible manner a HTML/PHP form was
written that directed the SPARQL query to ARQ
which then got presented back in the browser. The
browser would pre-fill the query window with a
SPARQL query that searches for all events around
Lund. This makes it a little easier to adapt it to
your own queries, but it‘s still pretty complex.
This method had two major drawbacks. First of
all it requires you to have some knowledge in the
SPARQL querying language in order to modify
the queries to one‘s preference. Secondly the re-
sulting output was not very pretty, as it was pure
JSON.

4.2 Search Engine

The drawbacks of the SPARQL Endpoint men-
tioned above led to the development of a “search
engine* for events. This search engine would
eliminate the need for knowing SPARQL syntax
and it could present the results in a much more
user-friendly fashion.

The first part of this search engine consisted of
building a search form with suitable fields and op-
tions. The options that were chosen were where,
from date and to date. These would be filled out by
the user which when posted would get extracted to
form the basis for the SPARQL query. To handle
all this a combination of HTML, CSS, PHP and
Javascript was used. Since the event sites that were
being scraped mostly contained events from the
Lund/Malmé area the options for these two cities
were chosen. Further, a choice for My Position
was added that uses HTMLS to fetch your current
location. If you would visit the site from a mobile
device the location would be even more accurate
since it would utilize the GPS. When searching
within a city a suitable center point was located
with the help of Google Maps and a large enough
area to cover the the city was calculated in order
for the query filtering to work as intended.

The second part of the search engine consisted
of presenting the search results in a good manner.
The result page got formatted with CSS and each



event got a dedicated box containing the event
name, description, time and address. If the event
had been successfully geocoded the address would
be a hyper link taking you to Google Maps with
the point marked on the map.

A final improvement that was made to the
search result page was to include a Google Map
with the area used for the search and each found
event marked on the map. This was done with the
use of Google Maps JavaScript API v3 [1]. A fea-
ture was also added so that each marked event on
the map could be clicked which would take you
down to the event in the search result list. In the
case when many events occurs at the same place
they get randomly scattered close around the point
to avoid them overlapping.

5 Results

The server used in the project isn‘t guaranteed to
be up forever, and should a server switch occur
the url will most likely change. However, if the
server is still up then the following urls will show
the result of this project:

1. Converted RDF files: http://
ec2-54-234-94-2477 .compute-1.
amazonaws .com/rdf/

2. SPARQL endpoint: http://
ec2-54-234-94-2477 .compute-1.
amazonaws.com/sparqgl.html

3. Search engine: http://
ec2-54-234-94-247 .compute-1.
amazonaws.com/searchevent .php

Please note that the data for the search engine
isn‘t updated automatically, so when you read this
document the data for the search engine probably
only covers a small, outdated time period, possibly
showing no events. Use dates around may 2013
and you should get some results.

6 Discussion

This project has a lot of potential for improve-
ments and branches that could serve as new inter-
esting project areas. One of the more obvious is to
write more scrapers in order to get access to more
data to serve a larger base for the applications that
could utilize the RDF data. This is also essential
for any of the suggested Al related areas below in
order to have a larger pool of data to process.

A more Al specific area of interest previously
mentioned in this paper is the issue of performing
even more accurate geocoding. By extracting all
cases where the geocoding failed one could look
into what kind of patterns and classes of cases that
these exhibit and then apply appropriate analysis
in order to be more successful with the geocoding.

Another area of improvement suggested by
Pierre Nugues is performing classification of the
events. This would require looking into what cat-
egories that the major event web sites has and try
to extrapolate what categories that could serve as
a common framework for all scraped events. One
could then use various Al techniques to automati-
cally classify each event into one of these classes.

Due to the delays with Sindice we have been
unable to perform queries against their SPARQL
endpoints. However, their endpoints are now up
and running so someone should look into using
them and/or adapting the search engine to take
data from Sindice instead. Switching to Sindice’s
endpoint could also provide access to events that
wasn’t scraped by this project but that are still
compatible. Perhaps the search engine built in
this project could suddenly be usable for events all
around the entire world.

It needs to be pointed out that web scraping
could run into legal issues so depending on the in-
tended use and scale one must look into the terms
of use for each site being scraped.

Acknowledgments

We would like to thank everyone involved for the
opportunity to partake in this project. Special
thanks to Pierre, for providing us with information
and material necessary to start the project. Special
thanks also to Héakan, for guiding us and on a more
detailed level through everything we did. We have
learned a lot throughout the project and we hope
that the results will be of use to someone.

References

[1] Google Developers. Google Maps JavaScript
API v3. June 5, 2013. URL: https : / /
developers . google . com / maps /
documentation/javascript/.

[2] The Apache Software Foundation. Apache
CouchDB. June 5, 2013. URL: http : / /
couchdb.apache.org/.



(3]

[4]

(5]

[6]

The Apache Software Foundation. Apache
Jena. June 5, 2013. URL: http://jena.
apache.org/.

JSON. JSON in Java. June 5, 2013. URL:
http://json.org/java/.

Sindice. Sindice - The semantic web index.
June 5, 2013. URL: http://sindice.
com/.

Arrskog T. and Norlander P. Event Extraction
for Contextual Point of Interest Databases.
Department of Computer Science, Faculty of
Engineering LTH, Lund University. 2012.



