

Question classifier for the Question Answering system Hajen

Goals of Hajen

- System that can answer questions in a way similar to IBM Watson
- Specifically developed to answer questions on the quiz show Jeopardy!
- Use semantic knowledge extracted from Swedish sources: Wikipedia, encyclopedias, Göteborgs posten, others?
- Tribute to Ulf Hannerz, legendary winner of Kvitt eller dubbelt in 1957

Kvitt eller dubbelt

· SVT-klassikern equivalent to Jeopardy! in Sweden

Kvitt eller dubbelt: The questions

LUND UNIVERSITY

Representing the Questions

- We transcribed a set of cards to this format : *Number Category Star Subject Points Question Answer AnswerExplanation CoarseType*
- · To have this :

149 Animals and Nature * Dog 250 What is a baby dog called ? Puppy

- · Then we transformed into RDF triples.
- Using SPARQL, we can extract easily data from the graph.
- · 230 cards (1380questions) transcribed so far.

A First Prototype

- · Core prototype:
 - A baseline pipeline, two modules so far *Question classification* and *Passage retrieval* Contributors: Chistopher Käck, Robin Leussier. Rebecka Weegar, Juri Pyykkö, students in an Al project.
- · Additional contributions:
 - Entity disambiguation
 Contributor: Marcus Klang, Master's project
 - Extraction of logical rules from wikipedia
 Contributors: Alex Wallin and Christian Lindgren, Al project

Question Classification (From Surdeanu and Pasca)

UNIVERSITY

Question Classification

- Goal: Apply constraints on the answer type
 - Input: A question. Vad heter den argentinska dans som Petra Nielsen dansade i melodifestivalen 2004?
 - Output:

٠

- » An answer class. *A description, an entity* (the answer is *Tango*).
- » A question class. Långt borta och nära

Answer and Question Classes

- · Question classes: Category on the back of the card.
- · Answer classes:
 - We experimented with classes from *Learning Question Classifiers* by Xin Li and Dan Roth
 - The classes are coarse and fine grained:
 - » Course: Entity, description, human, location, numeric.
 - » We only worked with the coarse classes
 - We recommend adding to more classes
 » Action and binary
 - Not set in stone. Might need to add classes.
 Depending on the needs of the passage retrieval

Web Interface (API: POST Request)

Classify question		
	irerar root@eruditorum.org?	
Run		
	Classify question	
Result		
Class: Books		

- Classifiers: LibSVM, LibLINEAR, SMO poly-kernel, BayesNet, SMO StringKernel
- Numerical input vector using the libsvm format except for StringKernel which requires String inputs.
- Vectors represent the presence or absence of a certain word in the question (coverted to lower case and symbols removed)
- Tf-idf weights.
 - WordFreqInQuestion / WordFreqInAllQuestions

Training Set

- 1151 questions from *Kvitt eller dubbelt*
- A test set supplied by Quizkampen: 12 categories: *Böcker och ord, Jorden runt*, etc which we used during the development since took long time to transcribe the big dataset.
 - Problem with non-mutually exclusive categories: Böcker och ord and Konst och Kultur in QK.
 - Not so much in the *Kvitt eller dubbelt* question categories, but in the **answer categories**.

Results

•

- · Ten fold cross-validation.
 - Results on classifying Question classes

 SVM: Stringkernel 	68.9 %
 SVM: Polykernel 	65 %
LibSVM: Linear kernel	65.7 %
 BayesNet 	65 %
 LinearRegression 	68.2 %

Results from classifying Anser classe

 SVM: Stringkernel 	80.3 %
 SVM: Polykernel 	77.7 %
 LibSVM: Linear kernel 	78.5 %
 BayesNet 	71.0 %
 LinearRegression 	81.23 %

Conclusions

- The StringKernel method performs generally very well, but it is slow to train.
- The improvements in the results in the answer classes seems to be due to a strong bias towards the entity class (most question belongs there).
- Continuing the work it is important to find good answers classes.
 - They need to be useful for the rest of the system
 - They need to be mutually exclusive
- Improving the features
 - We could try stemming, part-of-speech tagging, n-grams etc.

LUND UNIVERSITY