Genetic Walkers

Johan Andersson

Introduction

- Goal: Evolve movement of 3D 'creatures'
- How: Genetic algorithm
- Simulation environment: Breve (www.spiderland.org)

Why this project?

- Interesting

The Walkers

- Biped - Two legs and feet
- Quadruped - Four legs and feet
- Simple Quadruped - Four legs, no feet
- Octoped - Eight single segment legs, no feet

Movement

- Legs and feet are controlled by joints
- Joints move attached limbs with a certain velocity
- The velocities are calculated each iteration as:

```
def calculateJointVelocity( j, time ):
return amplitude * sin( angv * time + getDT(j) )
```

- Amplitude, angv and dt depend on the walker DNA
- List of values for the velocity function
- Example: Simple Quadruped
- 1 DT per joint + angV + amplitude = 10 values
- [dt0, dt1, ... dt6, dt7, angv, amplitude]
- Quadruped
- Has an evolving shape
- 3 DT per leg + angV + max amplitude + body width + two leg lengths (upper and lower) + footWidth $=18$ values
- Larger search space, harder to find a good solution!

Algorithm cycle

- Simulation
- Fitness evalutation
- Selection
- Breeding
- Repeat

The fitness functions

- Biped - Time until it falls over
- Quadruped - Distance from original position
- Simple Quadruped - Distance from original position
- Octoped -Distance from original position

Selection

- Elitism, the x best walkers get to live on
- Tournament selection:
- Two individuals are selected randomly, and the one with higher score get to be a parent.
- Repeat for another parent.

Breeding

- Two parents produce two children
- One point crossover
- Mutation

Mutation

- Mutation rate: around 5\%
- Mutated values changed by 10%

Results

- [Video]

UNIVERSITY

Possible improvements

- A new simulation environment
- Better movement function
- Optimization and multithreading

Questions?

UNIVERSITY

