
Functional Reactive Programming

EDAN40: Functional Programming
Functional Reactive Programming

Jacek Malec
Dept. of Computer Science, Lund University, Sweden

May 22nd, 2023

Jacek Malec, http://rss.cs.lth.se 1(26)

Functional Reactive Programming

What is reactive programming

Lecture based on:
http://www.haskell.org/haskellwiki/Functional_
Reactive_Programming

Edward Amsden: “A Survey of Functional Reactive
Programming” (search for a video from September 2012)
http://www.haskell.org/haskellwiki/Reactive-banana
Conal Elliot’s (Yale, Yampa) slides on FRP
https://github.com/gelisam/frp-zoo

https://github.com/acowley/roshask.git

Jacek Malec, http://rss.cs.lth.se 2(26)

http://www.haskell.org/haskellwiki/Functional_Reactive_Programming
http://www.haskell.org/haskellwiki/Functional_Reactive_Programming
https://github.com/gelisam/frp-zoo
https://github.com/acowley/roshask.git

Functional Reactive Programming

Heron

Jacek Malec, http://rss.cs.lth.se 3(26)

Functional Reactive Programming

Heron + ROS

Jacek Malec, http://rss.cs.lth.se 4(26)

Functional Reactive Programming

Heron + ROS

Jacek Malec, http://rss.cs.lth.se 5(26)

Functional Reactive Programming

ROS

Robot Operating System
middleware
client-server
publisher-subscriber (topics)
streams (sometimes in real time)

roshask

Jacek Malec, http://rss.cs.lth.se 6(26)

Functional Reactive Programming

ROS

Robot Operating System
middleware
client-server
publisher-subscriber (topics)
streams (sometimes in real time)
roshask

Jacek Malec, http://rss.cs.lth.se 6(26)

Functional Reactive Programming

Basic Concepts of Reactivity

Reactivity ≡ time-dependent responsiveness
1 behaviours (signals, fluents, streams) – functions of time
2 occurrences – elements in Val × Time
3 events – sets of occurrences (lists in our case)

An interesting issue: continuous vs. discrete time

Approaches to reactivity:
“embedding” (classical)
signal-based
n-ary FRP

Semantics vs. interpretation

Jacek Malec, http://rss.cs.lth.se 7(26)

Functional Reactive Programming

Basic Concepts of Reactivity

Reactivity ≡ time-dependent responsiveness
1 behaviours (signals, fluents, streams) – functions of time
2 occurrences – elements in Val × Time
3 events – sets of occurrences (lists in our case)

An interesting issue: continuous vs. discrete time
Approaches to reactivity:

“embedding” (classical)
signal-based
n-ary FRP

Semantics vs. interpretation

Jacek Malec, http://rss.cs.lth.se 7(26)

Functional Reactive Programming

Behaviours

newtype Behavior a =
Behavior {

at :: Time -> a
}

myCityName :: Behavior String

myCityName ‘at‘ yesterday

Jacek Malec, http://rss.cs.lth.se 8(26)

Functional Reactive Programming

Behaviours

type Behavior a = Time -> a -- conceptually
type Time = Float

-- lifting many functions from a to Behavior a

timeTrans :: Behavior Time -> Behavior a
-> Behavior a

timeTrans f ba t = ba (f t)

integral :: Behavior Float -> Behavior Float
derivative :: Behavior Float -> Behavior Float

Jacek Malec, http://rss.cs.lth.se 9(26)

Functional Reactive Programming

Events

type Event a = [(a, Time)] -- conceptually
untilB :: Behavior a -> Event (Behavior a)

-> Behavior a
switch :: Behavior a -> Event (Behavior a)

-> Behavior a

-- Event mapping
(->>) :: Event a -> b -> Event b
(=>>) :: Event a -> (a -> Event b) -> Event b

-- Event choice
(.|.) :: Event a -> Event a -> Event a

Jacek Malec, http://rss.cs.lth.se 10(26)

Functional Reactive Programming

Events, cntd

-- Snapshot events
snapshot_ :: Event a -> Behavior b -> Event b

-- Predicate event
when :: Behavior Bool -> Event ()

-- other
step :: a -> Event a -> Behavior a
stepAccum :: a -> Event (a -> a) -> Behavior a
withElem_ :: Event a -> [b] -> Event b

Jacek Malec, http://rss.cs.lth.se 11(26)

Functional Reactive Programming

A graphics library

gloss library

paddle.hs

Jacek Malec, http://rss.cs.lth.se 12(26)

Functional Reactive Programming

Implementation issues

reactive banana library offers constructors:

filter :: (a -> Bool) -> Event a -> Event a
accumE :: a -> Event (a -> a) -> Event a
stepper :: a -> Event a -> Behavior a
apply :: Behavior (a -> b) -> Event a -> Event b

instance Functor Event
instance Functor Behavior
instance Applicative Behavior
instance Monoid (Event a)

Jacek Malec, http://rss.cs.lth.se 13(26)

Functional Reactive Programming

Signal functions

Signal - primitive concept

SF - primitive type:

-- informally
SF a b = Signal a -> Signal b

and

-- informally again
Signal a = Time -> a

Time is considered to be real-valued.

Jacek Malec, http://rss.cs.lth.se 14(26)

Functional Reactive Programming

Arrows

Arrow a b c represents a process that takes as input something of
type b and outputs something of type c.

arr builds an arrow from a function:

arr :: (Arrow a) => (b -> c) -> a b c

Arrows are composed with (>>>), while first and second create
new arrows:

(>>>) :: (Arrow a) => a b c -> a c d -> a b d
first :: (Arrow a) => a b c -> a (b, d) (c, d)
second :: (Arrow a) => a b c -> a (d, b) (d, c)

Jacek Malec, http://rss.cs.lth.se 15(26)

Functional Reactive Programming

Signal function primitives

Point-wise application:

arr :: (a -> b) -> SF a b
arr f = \s -> \t -> f (s t)

Signal composition:

(>>>) :: SF a b -> SF b c -> SF a c
sf1 >>> sf2 = \s -> \t -> (sf2 (sf1 s)) t = sf2 . sf1

Other compositions:

first :: SF a b -> SF (a, c) (b, c)
(&&&) :: SF a b -> SF a c -> SF a (b, c)
loop :: SF (a, c) (b, c) -> SF a b

Jacek Malec, http://rss.cs.lth.se 16(26)

Functional Reactive Programming

Signal function primitives

Jacek Malec, http://rss.cs.lth.se 17(26)

Functional Reactive Programming

Signal functions, cont.

Doing something with it:

integral :: Fractional a => SF a a

is a stateful primitive (depends not only on t but maybe also on
[0, t]).
The integral primitive computes the time integral of its input
signal:

localTime :: SF a Time

localTime = const 1.0 >>> integral

Then we introduce events ... (for more see the AFRP papers).

Jacek Malec, http://rss.cs.lth.se 18(26)

Functional Reactive Programming

Where to go from here?

Arrows (a generalisation of monads)
Hughes@CTH (first paper on Arrows: 2000)
AFRP = Arrowized FRP (first paper on AFRP by Hudak et al.:
2002)

Applicative functors (weaker than monads, no value passing)
Various signal-functions-semantics implementations (see the
survey paper)
Actively developed libraries: Yampa (unary FRP a la Yale),
reactive-banana (1.2.0.0 as of May 15th, 2018)
Lots to do ...

Jacek Malec, http://rss.cs.lth.se 19(26)

Functional Reactive Programming

So what about heron?

publish "t-cmd" (go $ interpolate fuse t1 t2)

Jacek Malec, http://rss.cs.lth.se 20(26)

Functional Reactive Programming

roshask

Filtering a sensor value
1 identify threshold crossing
2 react to it

void handle_sensor(float val) {
if(val > threshold) {

act(val*0.1); } }

When topics are first class objects:

subscribe "sense" >>=
publish "cmd" . fmap act . filter (>threshold)

Jacek Malec, http://rss.cs.lth.se 21(26)

Functional Reactive Programming

roshask

Filtering a sensor value
1 identify threshold crossing
2 react to it

void handle_sensor(float val) {
if(val > threshold) {

act(val*0.1); } }

When topics are first class objects:

subscribe "sense" >>=
publish "cmd" . fmap act . filter (>threshold)

Jacek Malec, http://rss.cs.lth.se 21(26)

Functional Reactive Programming

A couple of examples

A sliding window of given size, accumulating the values over a

slidingWindow :: (Monad m , Monoid a) =>
Int -> Topic m a -> Topic m a

Averaging over n (10) values

avg :: Monad m => Topic m Float -> Topic m Float
avg = fmap (*0.1) . slidingWindow 10

Jacek Malec, http://rss.cs.lth.se 22(26)

Functional Reactive Programming

How is it done?

A ROS topic is a step function yielding a value and the rest of the
topic:

newtype T m a = T {unT :: m (a, T m a)}

where m is an additional type constructor.
Note that

instance Functor m => Functor (T m) where
fmap f (T t) = T (fmap (f *** fmap f) t)

But be careful!

fmapT f (T t) = T (fmapm (f *** fmapT f) t)

(***) is coming from Arrow library.
Jacek Malec, http://rss.cs.lth.se 23(26)

Functional Reactive Programming

roshask

telescope :: Node ()
telescope =

advertise "video" $ (topicRate 60 (runTopicState images 0))

detectUFO :: Node ()
detectUFO =

subscribe "video" >>= runHandler findPt >> return ()

main = runNode "NodeCompose" $ telescope >> detectUFO

Jacek Malec, http://rss.cs.lth.se 24(26)

Functional Reactive Programming

The Heron example

class Sensor a where
sensor :: Node (Topic IO a)

class Command a where
command :: Topic IO a -> Node ()

class Controller a where
controller :: a -> Node ()

instance Sensor Velocity where
sensor = subscribe "odom"

>>= return . fmap (_twist . _twist))
instance Command Velocity where

command = publish "/mobile_base/commands/velocity"
instance (Sensor a,Command b) => Controller (a -> b) where

controller f = sensor >>= command . fmap f
Jacek Malec, http://rss.cs.lth.se 25(26)

Functional Reactive Programming

ROSY example

move :: Velocity
move = Velocity 0.5 0
main = simulate move

accelerate :: Velocity -> Velocity
accelerate (Velocity vl va) = Velocity (vl+0.5) va

play :: Bumper -> Maybe Sound
play (Bumper _ Pressed) = Just ErrorSound
play (Bumper _ Released) = Nothing
accelerateAndPlay = (accelerate,play)

Jacek Malec, http://rss.cs.lth.se 26(26)

