
Bright
The smart founder’s copilot

Functional Programming
in Industry

A note about me

Bdellium Fugue Bright

Graduated Engineering Physics at LTH

Retirement Plan Optimization
Data Analytics
Haskell for analytics,
Rails for presentation

Declarative Configuration DSL
Compiler, Haskell only

SaaS data analytics
Haskell for analytics,
Rails for presentation

Why Haskell at Bright?

Bright connects to your company’s existing data sources to identify
strategic risks and opportunities. Data sources like Stripe (covering

versions of data back to 2010), Google Adwords, Facebook, free-form
data via API and Javascript snippets.

• Lots of different complex data sources means lots of places things
can go wrong, algebraic data types and a compiler to the rescue!

• Very good support for easy parallelism and concurrency.
• Good community (IRC, Stack Overflow, Reddit), easy to hire for!

Parallelism and concurrency

• “Parallel and Concurrent Programming in Haskell”  
 by Simon Marlow

• Parallelism and concurrency is more important than ever.
• There are a lot of different ways to do both parallelism and

concurrency in Haskell.

Parallelism and concurrency

Multiple cores
for performance

Multiple threads
for modularity
of interaction

Parallelism Concurrency

Has side-effectsPure, deterministic

Parallelism
• Eval Monad, rpar and rseq
• Strategies
• Par Monad
• Data Parallel Programming with Repa
• GPU Programming with Accelerate

Concurrency
• Threads and MVars
• Software Transactional Memory
• Distributed Concurrency with Cloud Haskell (like Erlang)

Parallelism - rpar and rseq as building blocks

do
 a’ <- rpar a
 b’ <- rpar b
 return (a’,b’)

do
 a’ <- rpar a
 b’ <- rseq b
 return (a’,b’)
do
 a’ <- rpar a
 b’ <- rseq b
 rseq a’
 return (a’,b’)

do
 a’ <- rpar a
 b’ <- rpar b
 rseq a’
 rseq b’
 return (a’,b’)

return

a

b

Example

Parallelism - rpar and rseq as building blocks

return

a

b

Example

do
 a’ <- rpar a
 b’ <- rpar b
 return (a’,b’)

do
 a’ <- rpar a
 b’ <- rseq b
 return (a’,b’)
do
 a’ <- rpar a
 b’ <- rseq b
 rseq a’
 return (a’,b’)

do
 a’ <- rpar a
 b’ <- rpar b
 rseq a’
 rseq b’
 return (a’,b’)

Parallelism - rpar and rseq as building blocks

return

a

b

Example

do
 a’ <- rpar a
 b’ <- rpar b
 return (a’,b’)

do
 a’ <- rpar a
 b’ <- rseq b
 return (a’,b’)
do
 a’ <- rpar a
 b’ <- rseq b
 rseq a’
 return (a’,b’)

do
 a’ <- rpar a
 b’ <- rpar b
 rseq a’
 rseq b’
 return (a’,b’)

Parallelism - rpar and rseq as building blocks

return

a

b

Example

do
 a’ <- rpar a
 b’ <- rpar b
 return (a’,b’)

do
 a’ <- rpar a
 b’ <- rseq b
 return (a’,b’)
do
 a’ <- rpar a
 b’ <- rseq b
 rseq a’
 return (a’,b’)

do
 a’ <- rpar a
 b’ <- rpar b
 rseq a’
 rseq b’
 return (a’,b’)

Parallelism - Control.Parallel.Strategies

• Tuple Strategies 
seqPair, parPair, …

• General Traversals 
seqTraverse, parTraverse

• List strategies 
seqList, parList, parMap, parListChunk, …

• Relatively easy to build own strategies

Parallelism - Actual Real-world Example

-- | Create forecasts for every participant
assignForecasts :: Inputs -> [Participant]
assignForecasts ins = map create (ins^.participants)

-- | Create forecasts for every participant
assignForecasts :: Inputs -> [Participant]
assignForecasts ins = map create (ins^.participants) `using` parList rdeepseq

Sequential version

Parallel version

Concurrency - The building blocks

forkIO :: IO () -> IO ThreadId
newEmptyMVar :: IO (MVar a)
takeMVar :: MVar a -> IO a
putMVar :: MVar a -> a -> IO ()

Example from Simon Marlow’s book
do
 m1 <- newEmptyMVar
 m2 <- newEmptyMVar
 forkIO $ do
 r <- getURL "http://www.wikipedia.org/wiki/Shovel"
 putMVar m1 r
 forkIO $ do
 r <- getURL "http://www.wikipedia.org/wiki/Spade"
 putMVar m2 r
 r1 <- takeMVar m1
 r2 <- takeMVar m2
 return (r1,r2)

MVars are single-value
communication channels.
A box than can be full or
empty.

Concurrency - Actual Real-world Example
fetchRange :: Text -> Text -> Vector Day -> Bright IO ()
fetchRange stripeAcctId stripeToken range = do
 chan <- liftIO $ atomically $ newTBMChan 20
 st <- ask
 let f 0 x = stripeFetcher chan stripeToken Nothing x Nothing
 f i x = stripeFetcher chan stripeToken (range V.!? (i - 1)) x Nothing
 _ <- V.imapM_ f range
 runResourceT $ sourceTBMChan chan $$ processingSink stripeAcctId (length range) 0
 return ()

stripeFetcher :: TBMChan (ByteString, Bool) -> Text -> Maybe Day -> Day -> Maybe ByteString -> Bright IO ()
stripeFetcher chan stripeToken beginning end startingAfter = do
 request <- …
 manager <- liftIO $ newManager tlsManagerSettings
 response <- httpLbs request manager
 let body = LBS.toStrict $ responseBody response
 when (isNothing startingAfter) $
 $(logTM) DebugS $ "Fetching " <> showLS (fromMaybe 0 $ body ^? key "total_count" .
_Integer) <> " events"

 if stripeHasMore body
 then do
 yield (body, False) $$ sinkTBMChan chan False
 stripeFetcher chan stripeToken beginning end (getStartingAfterId body)
 else do
 yield (body, True) $$ sinkTBMChan chan False
 return ()

Notes on Library Support
Very good library coverage for almost all things you want to
do, available on Hackage. Most of the time, documentation
is somewhat lacking.

Commonly used libraries
• Lens – Makes most things much more convenient
• Pipes / Conduit – Solves “The Lazy IO problem”
• Wreq – For dealing with web requests to other services
• Aeson – JSON serialization
• wai / Scotty / Servant – Building web services

Lenses

• A concept that’s implemented in multiple libraries, the
most popular being the `lens` package by Edward Kmett.

• Typically used to make dealing with records a bit more
pleasant

• Provides a lot of convenience in working with traversals of
generic data structures

Lenses

data Person = Person { name :: String
 , addr :: Address
 , salary :: Int }

data Address = Address { road :: String
 , city :: String
 , postcode :: String }

getName :: Person -> String
getName p = name p

get :: (s -> a) -> s -> a
get property structure = property structure

getCity :: Person -> String
getCity p = city (addr p)

getdeep :: (s1 -> s2) -> (s2 -> a) -> s1 -> a
getdeep prop1 prop2 structure = prop2 (prop1 structure)

>>> getdeep addr city == get (addr.city)

Lenses

data Person = Person { name :: String
 , addr :: Address
 , salary :: Int }

data Address = Address { road :: String
 , city :: String
 , postcode :: String }

setName :: String -> Person -> Person
setName n p = p { name = n }

setPostcode :: String -> Person -> Person
setPostcode pc p = p { addr = addr p { postcode = pc }} -- UGLY!

set :: (s -> a) -> a -> s -> s
set prop n p = p { prop = n }

LensExample.hs:15:20:
 `prop' is not a (visible) constructor field name

Lenses

p^.assets
p^.forecast.retiresAt
p^.forecast.current.gapAnalysis
p^.forecast.optimized.projectedFunding.income.percent

-- sum of all unconstSalary records
sumOf (accs.traverse.unconstSalary) paccs

-- maximum forecastSalary in the first 36 months
maximumOf (accs.taking 36 traverse.forecastSalary) paccs

-- a list of the RRR for each participant under the current plan
design
ps^..folded.forecast.current.projectedFunding.income.percent

• Example of nested data structures making heavy use of the accessor methods.

• Making traversals trivial

Pipes / Conduit

• Libraries for stream programming in Haskell.

• Dealing with long-running, complex or Lazy IO in Haskell
can be very difficult.

• Provides a clean and simple API to provide effectful,
streaming, and composable programming.

Pipes / Conduit

• Lazy IO is especially hard to get right

• IO is difficult to decompose and re-use. Most attempts result
in some sort of pipeline, whether explicit or not.

withFile "hello.txt" ReadMode hGetContents >>= print
>>> ""
withFile "hello.txt" ReadMode (hGetContents >=> print)
>>> "Hello world!"

Example of decomposing “echo” program
main = do
 eof <- isEOF
 unless eof $ do
 str <- getLine
 putStrLn (transform str)
 main

transform :: String -> String
transform = reverse

main = readData transform printer

readData :: (String -> String) -> (String -> IO ()) -> IO ()
readData t p = do
 eof <- isEOF
 unless eof $ do
 str <- getLine
 p $ t str
 readData t p

printer :: String -> IO ()
printer s = putStrLn s

transform :: String -> String
transform = reverse

Example of decomposing “echo” program
main = runEffect mainPipeline

mainPipeline :: Effect IO ()
mainPipeline = readData
 >-> transform
 >-> printer

readData :: Producer String IO ()
readData = forever $ do
 eof <- lift isEOF
 unless eof $ do
 str <- lift getLine
 yield str

transform :: Monad m => Pipe String String m ()
transform = forever $ do
 str <- await
 yield $ reverse str

printer :: Consumer String IO ()
printer = forever $ do
 str <- await
 lift $ putStrLn str

Talking to websites

>>> r <- get "http://httpbin.org/get"
>>> r ^. responseStatus . statusCode
200

>>> r <- post "http://httpbin.org/post" ["num" := 31337, "str" := "foo"]
>>> r ^? responseBody . key "form" . key "num"
Just (String "31337")

• Several libraries depending on what “level” of interaction
you want (high/low)

• Wreq is designed to be easy and simple to work with

Dealing with JSON
Aeson and lens-aeson makes it easy to both produce and
consume JSON
data Person = Person {
 name :: String
 , age :: Int
 }

instance FromJSON Person where
 parseJSON = withObject "Person" $ \v -> Person
 <$> v .: "name"
 <*> v .: "age"

>>> decode "{\"name\":\"Joe\",\"age\":12}" :: Maybe Person
Just (Person {name = "Joe", age = 12})

instance ToJSON Person where
 toJSON (Person name age) =
 object ["name" .= name, "age" .= age]

>>> encode (Person {name = "Joe", age = 12})
"{\"name\":\"Joe\",\"age\":12}"

Dealing with JSON
Using some language extensions to make life easier

{-# LANGUAGE DeriveGeneric, DeriveAnyClass #-}

import GHC.Generics
import Data.Aeson

data Person = Person {
 name :: String,
 age :: Int }
 deriving (Generic, ToJSON, FromJSON)

Dealing with JSON

Working with arbitrary JSON in an easy way with lens-aeson

>>> "[1, \"x\"]" ^? nth 0 . _Number
Just 1.0

>>> "{\"a\": \"xyz\", \"b\": true}" ^? key "a" . _String
Just "xyz"

>>> "{\"a\": \"xyz\", \"b\": true}" ^? key "b" . _String
Nothing

>>> "{\"a\": \"xyz\", \"b\": true}" ^? key "b"
Just (Bool True)

Creating web services

Many excellent libraries at various levels

• Yesod
• Scotty / Spock
• Servant
• wai

Creating web services

main :: IO ()
main =
 runSpock 8080 $ spockT id $ do
 get "/" $
 html "Calculate 313 + 3"
 get ("hello" <//> ":name") $ do
 name <- param' "name"
 text $ "Hello " <> name <> "!"
 get ("calculator" <//> ":a" <//> "+" <//> ":b") $ do
 a <- param' "a"
 b <- param' "b"
 text $ pack $ show (a + b :: Int)

Spock example

Creating web services

app :: Application
app _ respond = do
 putStrLn "I've done some IO here"
 respond $ responseLBS
 status200
 [("Content-Type", "text/plain")]
 "Hello, Web!"

Wai example

Creating web services

type UserAPI = "users" :> Get '[JSON] [User] -- GET /users

data User = User
 { name :: String
 , age :: Int
 } deriving (Eq, Show, Generic, ToJSON)

-- From DB in real life
users :: [User]
users = [User "Isaac Newton" 372, User "Albert Einstein" 136]

server :: Server UserAPI
server = return users

userAPI :: Proxy UserAPI
userAPI = Proxy

app :: Application
app = serve userAPI server

Servant example
(http://haskell-servant.readthedocs.io/en/stable/tutorial/index.html)

Honorable mentions

• Elm
• Elixir
• Rust

Questions?

fredrik@bright.io

