
Verification

EDAN40: Functional Programming
On Program Verification

Jacek Malec
Dept. of Computer Science, Lund University, Sweden

May 15th, 2023

Jacek Malec, http://rss.cs.lth.se 1(26)



Verification

Equational reasoning

xy = yx

x + (y + z) = (x + y) + z

x(y + z) = xy + xz

(x + y)z = xz + yz

Jacek Malec, http://rss.cs.lth.se 2(26)



Verification

Equational reasoning

Then we can prove that

(x + a)(x + b) = x2 + (a + b)x + ab

by using the earlier laws

(x + a)(x + b) =

xx + ax + xb + ab =

x2 + ax + xb + ab =

x2 + ax + bx + ab =

x2 + (a + b)x + ab

Jacek Malec, http://rss.cs.lth.se 3(26)



Verification

Equational reasoning

Please note that although

x(a + b) = xa + xb

The lhs requires two arithmetic operations, while the rhs requires
three.
That’s why it is important.

Jacek Malec, http://rss.cs.lth.se 4(26)



Verification

Equational reasoning about Haskell

Consider

double :: Int -> Int
double x = x + x

A function definition

But also
A property of a function!

So whenever you have double x you can write x + x.
But also
whenever you have x + x you can write double x.

Applying and unapplying a function.

Jacek Malec, http://rss.cs.lth.se 5(26)



Verification

Equational reasoning about Haskell

Consider

double :: Int -> Int
double x = x + x

A function definition
But also
A property of a function!

So whenever you have double x you can write x + x.

But also
whenever you have x + x you can write double x.

Applying and unapplying a function.

Jacek Malec, http://rss.cs.lth.se 5(26)



Verification

Equational reasoning about Haskell

Consider

double :: Int -> Int
double x = x + x

A function definition
But also
A property of a function!

So whenever you have double x you can write x + x.
But also
whenever you have x + x you can write double x.

Applying and unapplying a function.

Jacek Malec, http://rss.cs.lth.se 5(26)



Verification

Equational reasoning about Haskell

But be careful!
Consider

isZero :: Int -> Bool
isZero 0 = True
isZero n = False

The first equation: bidirectional. The second: not so much! Why?

Because the order of expressions is significant: isZero n is
replaced by False ONLY WHEN n 6= 0.

Jacek Malec, http://rss.cs.lth.se 6(26)



Verification

Equational reasoning about Haskell

But be careful!
Consider

isZero :: Int -> Bool
isZero 0 = True
isZero n = False

The first equation: bidirectional. The second: not so much! Why?

Because the order of expressions is significant: isZero n is
replaced by False ONLY WHEN n 6= 0.

Jacek Malec, http://rss.cs.lth.se 6(26)



Verification

Equational reasoning about Haskell

But be careful!
Consider

isZero :: Int -> Bool
isZero 0 = True
isZero n = False

The first equation: bidirectional. The second: not so much! Why?

Because the order of expressions is significant: isZero n is
replaced by False ONLY WHEN n 6= 0.

Jacek Malec, http://rss.cs.lth.se 6(26)



Verification

Equational reasoning about Haskell

This effectively means:

isZero :: Int -> Bool
isZero 0 = True
isZero n | n /= 0 = False

The guard ensures explicit presence of the condition.

It also makes the equations independent of the order!

Patterns independent of the order of checking are called
non-overlapping.

A good practice: use always non-overlapping patterns whenever
possible.

Jacek Malec, http://rss.cs.lth.se 7(26)



Verification

Equational reasoning about Haskell

This effectively means:

isZero :: Int -> Bool
isZero 0 = True
isZero n | n /= 0 = False

The guard ensures explicit presence of the condition.

It also makes the equations independent of the order!

Patterns independent of the order of checking are called
non-overlapping.

A good practice: use always non-overlapping patterns whenever
possible.

Jacek Malec, http://rss.cs.lth.se 7(26)



Verification

Simple examples

A common example:

reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

Using this definition we can show that reverse [x] = [x] for any
value of x.

reverse [x] =
reverse (x: []) =
reverse [] ++ [x] =
[] ++ [x] =
[x]

So changing reverse [x] to [x] does not change the meaning of
a program, but changes its efficiency!

Jacek Malec, http://rss.cs.lth.se 8(26)



Verification

Simple examples

A common example:

reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

Using this definition we can show that reverse [x] = [x] for any
value of x.

reverse [x] =
reverse (x: []) =
reverse [] ++ [x] =
[] ++ [x] =
[x]

So changing reverse [x] to [x] does not change the meaning of
a program, but changes its efficiency!

Jacek Malec, http://rss.cs.lth.se 8(26)



Verification

Simple examples

Another example:

not :: Bool -> Bool
not False = True
not True = False

Pattern matching in the definition forces case analysis on
arguments. E.g. for not (not b) = b we need to separately
consider False:

not (not False) =
not True =
False

and then (similarly) True.

Jacek Malec, http://rss.cs.lth.se 9(26)



Verification

Simple examples

Another example:

not :: Bool -> Bool
not False = True
not True = False

Pattern matching in the definition forces case analysis on
arguments. E.g. for not (not b) = b we need to separately
consider False:

not (not False) =
not True =
False

and then (similarly) True.
Jacek Malec, http://rss.cs.lth.se 9(26)



Verification

Induction on numbers

The simplest example of a recursive type:

data Nat = Zero | Succ Nat

meaning the only values are

Zero
Succ Zero
Succ (Succ Zero)
Succ (Succ (Succ Zero))
...

We will NOT consider infinite case, where you add
inf = Succ inf,
just finite natural numbers.

Jacek Malec, http://rss.cs.lth.se 10(26)



Verification

Induction on numbers

The simplest example of a recursive type:

data Nat = Zero | Succ Nat

meaning the only values are

Zero
Succ Zero
Succ (Succ Zero)
Succ (Succ (Succ Zero))
...

We will NOT consider infinite case, where you add
inf = Succ inf,
just finite natural numbers.

Jacek Malec, http://rss.cs.lth.se 10(26)



Verification

Induction on numbers

Proving a property p that holds for all elements of a recursive type
(e.g. natural numbers above):

1 p Zero
2 If p n then necessarily p (Succ n)

Mathematical induction.

Jacek Malec, http://rss.cs.lth.se 11(26)



Verification

Induction on numbers

Consider:

add :: Nat -> Nat -> Nat
add Zero m = m
add (Succ n) m = Succ (add n m)

Prove (by induction) that adding a Zero does not change a value.

Case 1: add Zero m = m
directly from the definition
Case 2: add n Zero = n

Jacek Malec, http://rss.cs.lth.se 12(26)



Verification

Induction on numbers

Consider:

add :: Nat -> Nat -> Nat
add Zero m = m
add (Succ n) m = Succ (add n m)

Prove (by induction) that adding a Zero does not change a value.
Case 1: add Zero m = m
directly from the definition
Case 2: add n Zero = n

Jacek Malec, http://rss.cs.lth.se 12(26)



Verification

Induction on numbers

Case 2: add n Zero = n

base case:

add Zero Zero =
Zero

inductive step:

add (Succ n) Zero =
Succ (add n Zero) =
Succ n

QED. � vsv.

Jacek Malec, http://rss.cs.lth.se 13(26)



Verification

Induction on numbers

Induction applies to other enumerable types isomorphic with
natural numbers, e.g. Haskell integers:

replicate :: Integer -> a -> [a]
replicate 0 _ = []
replicate n x = x : replicate (n-1) x

Property to show:
length (replicate n x) = n for all n ≥ 0.

Jacek Malec, http://rss.cs.lth.se 14(26)



Verification

Induction on numbers

Induction applies to other enumerable types isomorphic with
natural numbers, e.g. Haskell integers:

replicate :: Integer -> a -> [a]
replicate 0 _ = []
replicate n x = x : replicate (n-1) x

Property to show:
length (replicate n x) = n for all n ≥ 0.

Jacek Malec, http://rss.cs.lth.se 14(26)



Verification

Induction on numbers
Base case:

length (replicate 0 x) =
length [] =
0

Induction step:

length (replicate (n+1) x) =
length (x : replicate n x) =
1 + length (replicate n x) =
1 + n =
n + 1

QED
Note the active use of the induction hypothesis!

Jacek Malec, http://rss.cs.lth.se 15(26)



Verification

Induction on numbers
Base case:

length (replicate 0 x) =
length [] =
0

Induction step:

length (replicate (n+1) x) =
length (x : replicate n x) =
1 + length (replicate n x) =
1 + n =
n + 1

QED
Note the active use of the induction hypothesis!

Jacek Malec, http://rss.cs.lth.se 15(26)



Verification

Induction on lists

Consider:

reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

Let us prove:

reverse (reverse xs) = xs

Jacek Malec, http://rss.cs.lth.se 16(26)



Verification

Induction on lists
Base case:

reverse (reverse []) =
reverse [] =
[]

Inductive case:

reverse (reverse (x:xs)) =
reverse (reverse xs ++ [x]) =
reverse [x] ++ reverse (reverse xs)) =
[x] ++ reverse (reverse xs)) =
[x] ++ xs =
x : xs

We have used a lemma: the distributivity of reverse over append:

reverse (xs ++ ys) = reverse ys ++ reverse xs

(distribution is contravariant.)

Jacek Malec, http://rss.cs.lth.se 17(26)



Verification

Induction on lists
Base case:

reverse (reverse []) =
reverse [] =
[]

Inductive case:

reverse (reverse (x:xs)) =
reverse (reverse xs ++ [x]) =
reverse [x] ++ reverse (reverse xs)) =
[x] ++ reverse (reverse xs)) =
[x] ++ xs =
x : xs

We have used a lemma: the distributivity of reverse over append:

reverse (xs ++ ys) = reverse ys ++ reverse xs

(distribution is contravariant.)

Jacek Malec, http://rss.cs.lth.se 17(26)



Verification

Induction on lists
Base case:

reverse (reverse []) =
reverse [] =
[]

Inductive case:

reverse (reverse (x:xs)) =
reverse (reverse xs ++ [x]) =
reverse [x] ++ reverse (reverse xs)) =
[x] ++ reverse (reverse xs)) =
[x] ++ xs =
x : xs

We have used a lemma: the distributivity of reverse over append:

reverse (xs ++ ys) = reverse ys ++ reverse xs

(distribution is contravariant.)
Jacek Malec, http://rss.cs.lth.se 17(26)



Verification

Induction on lists
Base case (because ++ is defined by pattern matching over the first
argument):

reverse ([] ++ ys) =
reverse ys =
reverse ys ++ [] =
reverse ys ++ reverse []

Inductive case:

reverse ((x:xs) ++ ys) =
reverse (x : (xs ++ ys)) =
reverse (xs ++ ys) ++ [x] =
(reverse ys ++ reverse xs) ++ [x] =
reverse ys ++ (reverse xs ++ [x]) =
reverse ys ++ reverse (x:xs)

QED

Jacek Malec, http://rss.cs.lth.se 18(26)



Verification

Induction on lists
Base case (because ++ is defined by pattern matching over the first
argument):

reverse ([] ++ ys) =
reverse ys =
reverse ys ++ [] =
reverse ys ++ reverse []

Inductive case:

reverse ((x:xs) ++ ys) =
reverse (x : (xs ++ ys)) =
reverse (xs ++ ys) ++ [x] =
(reverse ys ++ reverse xs) ++ [x] =
reverse ys ++ (reverse xs ++ [x]) =
reverse ys ++ reverse (x:xs)

QEDJacek Malec, http://rss.cs.lth.se 18(26)



Verification

Induction on lists
Remember functor laws:

fmap id = id
fmap (g . h) = fmap g . fmap h

We can verify them using induction over lists (or, more generally,
over recursive data structures, or functor types), where fmap is
meaningful.

We use

fmap :: (a -> b) -> [a] -> [b]
fmap g [] = []
fmap g (x:xs) = g x : fmap g xs

Whiteboard: show the first law.
Exercise: prove the second law.

Jacek Malec, http://rss.cs.lth.se 19(26)



Verification

Induction on lists
Remember functor laws:

fmap id = id
fmap (g . h) = fmap g . fmap h

We can verify them using induction over lists (or, more generally,
over recursive data structures, or functor types), where fmap is
meaningful.

We use

fmap :: (a -> b) -> [a] -> [b]
fmap g [] = []
fmap g (x:xs) = g x : fmap g xs

Whiteboard: show the first law.

Exercise: prove the second law.

Jacek Malec, http://rss.cs.lth.se 19(26)



Verification

Induction on lists
Remember functor laws:

fmap id = id
fmap (g . h) = fmap g . fmap h

We can verify them using induction over lists (or, more generally,
over recursive data structures, or functor types), where fmap is
meaningful.

We use

fmap :: (a -> b) -> [a] -> [b]
fmap g [] = []
fmap g (x:xs) = g x : fmap g xs

Whiteboard: show the first law.
Exercise: prove the second law.

Jacek Malec, http://rss.cs.lth.se 19(26)



Verification

Making append vanish

reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

Complexity?

(++) linear with respect to the first argument, thus
reverse is quadratic wrt to the length of its argument.

How to improve it?
The trick: define a more general function reverse’ combining the
behaviour of reverse and ++, so that always

reverse’ xs ys = reverse xs ++ ys

Then reverse would just become

reverse xs = reverse’ xs []

Jacek Malec, http://rss.cs.lth.se 20(26)



Verification

Making append vanish

reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

Complexity?
(++) linear with respect to the first argument, thus
reverse is quadratic wrt to the length of its argument.

How to improve it?

The trick: define a more general function reverse’ combining the
behaviour of reverse and ++, so that always

reverse’ xs ys = reverse xs ++ ys

Then reverse would just become

reverse xs = reverse’ xs []

Jacek Malec, http://rss.cs.lth.se 20(26)



Verification

Making append vanish

reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

Complexity?
(++) linear with respect to the first argument, thus
reverse is quadratic wrt to the length of its argument.

How to improve it?
The trick: define a more general function reverse’ combining the
behaviour of reverse and ++, so that always

reverse’ xs ys = reverse xs ++ ys

Then reverse would just become

reverse xs = reverse’ xs []
Jacek Malec, http://rss.cs.lth.se 20(26)



Verification

Constructing reverse’

Let’s verify the equation by induction on xs.
Base case:

reverse’ [] ys =
reverse [] ++ ys =
[] ++ ys =
ys

Inductive case:

reverse’ (x:xs) ys =
reverse (x:xs) ++ ys =
(reverse xs ++ [x]) ++ ys =
reverse xs ++ ([x] ++ ys) =
reverse’ xs ([x] ++ ys) =
reverse’ xs (x:ys)

Jacek Malec, http://rss.cs.lth.se 21(26)



Verification

Constructing reverse’

Let’s verify the equation by induction on xs.
Base case:

reverse’ [] ys =
reverse [] ++ ys =
[] ++ ys =
ys

Inductive case:

reverse’ (x:xs) ys =
reverse (x:xs) ++ ys =
(reverse xs ++ [x]) ++ ys =
reverse xs ++ ([x] ++ ys) =
reverse’ xs ([x] ++ ys) =
reverse’ xs (x:ys)

Jacek Malec, http://rss.cs.lth.se 21(26)



Verification

Constructing reverse’

From the construction we can conclude that

reverse’ :: [a] -> [a] -> [a]
reverse’ [] ys = ys
reverse’ (x:xs) ys = reverse’ xs (x:ys)

suffices to show by induction that

reverse’ xs ys = reverse xs ++ ys

As the definition does not use reverse, we can redefine it as

reverse :: [a] -> [a]
reverse xs = reverse’ xs []

Complexity? Linear!
Jacek Malec, http://rss.cs.lth.se 22(26)



Verification

Induction on tree-like types

data Tree = Leaf Int | Node Tree Tree

flatten :: Tree -> [Int]
flatten (Leaf n) = [n]
flatten (Node l r) = flatten l ++ flatten r

Append makes it inefficient. Let’s then do the trick again.

flatten’ t ns = flatten t ++ ns

Now induction must work on branches instead of successors.

Jacek Malec, http://rss.cs.lth.se 23(26)



Verification

Induction on tree-like types

data Tree = Leaf Int | Node Tree Tree

flatten :: Tree -> [Int]
flatten (Leaf n) = [n]
flatten (Node l r) = flatten l ++ flatten r

Append makes it inefficient. Let’s then do the trick again.

flatten’ t ns = flatten t ++ ns

Now induction must work on branches instead of successors.

Jacek Malec, http://rss.cs.lth.se 23(26)



Verification

Constructing flatten’

Base case:

flatten’ (Leaf n) ns =
flatten (Leaf n) ++ ns =
[n] ++ ns =
n : ns

Inductive case:

flatten’ (Node l r) ns =
(flatten l ++ flatten r) ++ ns =
flatten l ++ (flatten r ++ ns) =
flatten’ l (flatten r ++ ns) =
flatten’ l (flatten’ r ns)

Jacek Malec, http://rss.cs.lth.se 24(26)



Verification

Constructing flatten’

Base case:

flatten’ (Leaf n) ns =
flatten (Leaf n) ++ ns =
[n] ++ ns =
n : ns

Inductive case:

flatten’ (Node l r) ns =
(flatten l ++ flatten r) ++ ns =
flatten l ++ (flatten r ++ ns) =
flatten’ l (flatten r ++ ns) =
flatten’ l (flatten’ r ns)

Jacek Malec, http://rss.cs.lth.se 24(26)



Verification

Constructing flatten’

So the definition:

flatten’ :: Tree -> [Int] -> [Int]
flatten’ (Leaf n) ns = n : ns
flatten’ (Node l r) ns = flatten’ l (flatten’ r ns)

satisfies the specification we had for flatten’.

Finally we can define

flatten :: Tree -> [Int]
flatten t = flatten’ t []

Again: much more efficient.

Jacek Malec, http://rss.cs.lth.se 25(26)



Verification

Constructing flatten’

So the definition:

flatten’ :: Tree -> [Int] -> [Int]
flatten’ (Leaf n) ns = n : ns
flatten’ (Node l r) ns = flatten’ l (flatten’ r ns)

satisfies the specification we had for flatten’.
Finally we can define

flatten :: Tree -> [Int]
flatten t = flatten’ t []

Again: much more efficient.

Jacek Malec, http://rss.cs.lth.se 25(26)



Verification

HipSpec: automating proofs

Moa Johansson @ Chalmers.

Jacek Malec, http://rss.cs.lth.se 26(26)


