EDAN40: Functional Programming
 On Program Verification

Jacek Malec
Dept. of Computer Science, Lund University, Sweden
May 15th, 2023

Equational reasoning

$$
\begin{aligned}
x y & =y x \\
x+(y+z) & =(x+y)+z \\
x(y+z) & =x y+x z \\
(x+y) z & =x z+y z
\end{aligned}
$$

Equational reasoning

Then we can prove that

$$
(x+a)(x+b)=x^{2}+(a+b) x+a b
$$

by using the earlier laws

$$
\begin{gathered}
(x+a)(x+b)= \\
x x+a x+x b+a b= \\
x^{2}+a x+x b+a b= \\
x^{2}+a x+b x+a b= \\
x^{2}+(a+b) x+a b
\end{gathered}
$$

Equational reasoning

Please note that although

$$
x(a+b)=x a+x b
$$

The Ihs requires two arithmetic operations, while the rhs requires three.
That's why it is important.

Equational reasoning about Haskell

Consider

```
double :: Int -> Int
double x = x + x
```

A function definition

Equational reasoning about Haskell

Consider

```
double :: Int -> Int
double x = x + x
```

A function definition
But also
A property of a function!
So whenever you have double x you can write $\mathrm{x}+\mathrm{x}$.

Equational reasoning about Haskell

Consider
double :: Int -> Int
double $\mathrm{x}=\mathrm{x}+\mathrm{x}$
A function definition
But also
A property of a function!
So whenever you have double x you can write $\mathrm{x}+\mathrm{x}$. But also
whenever you have $\mathrm{x}+\mathrm{x}$ you can write double x .
Applying and unapplying a function.

Equational reasoning about Haskell

But be careful!
Consider

isZero :: Int -> Bool
isZero 0 = True
isZero n = False

Equational reasoning about Haskell

But be careful!
Consider
isZero :: Int -> Bool
isZero 0 = True
isZero n = False
The first equation: bidirectional. The second: not so much! Why?

Equational reasoning about Haskell

But be careful!
Consider
isZero :: Int -> Bool
isZero 0 = True
isZero n = False
The first equation: bidirectional. The second: not so much! Why?
Because the order of expressions is significant: isZero n is replaced by False ONLY WHEN $\mathrm{n} \neq 0$.

Equational reasoning about Haskell

This effectively means:

```
isZero :: Int -> Bool
isZero 0 = True
isZero n | n /= 0 = False
```

The guard ensures explicit presence of the condition.

Equational reasoning about Haskell

This effectively means:
isZero :: Int -> Bool
isZero $0 \quad=$ True
isZero $\mathrm{n} \mid \mathrm{n} /=0=$ False
The guard ensures explicit presence of the condition.
It also makes the equations independent of the order!
Patterns independent of the order of checking are called non-overlapping.

A good practice: use always non-overlapping patterns whenever possible.

Simple examples

A common example:

$$
\begin{aligned}
\text { reverse :: [a] } & ->[a] \\
\text { reverse }[] & =[] \\
\text { reverse (x:xs) } & =\text { reverse xs ++ [x] }
\end{aligned}
$$

Simple examples

A common example:

```
reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]
```

Using this definition we can show that reverse $[\mathrm{x}]=[\mathrm{x}]$ for any value of x .

```
reverse [x] =
reverse (x: []) =
reverse [] ++ [x] =
[] ++ [x] =
[x]
```

So changing reverse $[x]$ to $[x]$ does not change the meaning of a program, but changes its efficiency!

Simple examples

Another example:

not : : Bool -> Bool
not False $=$ True
not True = False

Simple examples

Another example:

```
not :: Bool -> Bool
not False = True
not True = False
```

Pattern matching in the definition forces case analysis on arguments. E.g. for not (not b) = b we need to separately consider False:

```
not (not False) =
not True =
False
```

and then (similarly) True.

Induction on numbers

The simplest example of a recursive type:
data Nat = Zero | Succ Nat
meaning the only values are
Zero
Succ Zero
Succ (Succ Zero)
Succ (Succ (Succ Zero))

Induction on numbers

The simplest example of a recursive type:
data Nat = Zero | Succ Nat
meaning the only values are
Zero
Succ Zero
Succ (Succ Zero)
Succ (Succ (Succ Zero))

We will NOT consider infinite case, where you add
inf = Succ inf, just finite natural numbers.

Induction on numbers

Proving a property p that holds for all elements of a recursive type (e.g. natural numbers above):
(1) p Zero
(2) If $\mathrm{p} n$ then necessarily p (Succ n)

Mathematical induction.

Induction on numbers

Consider:

```
add :: Nat -> Nat -> Nat
add Zero m = m
add (Succ n) m = Succ (add n m)
```

Prove (by induction) that adding a Zero does not change a value.

Induction on numbers

Consider:
add :: Nat -> Nat -> Nat
add Zero m = m
add (Succ n) m = Succ (add n m)
Prove (by induction) that adding a Zero does not change a value.
Case 1: add Zero m = m directly from the definition
Case 2: add n Zero = n

Induction on numbers

Case 2: add n Zero $=n$
base case:
add Zero Zero =
Zero
inductive step:
add (Succ n) Zero =
Succ (add n Zero) =
Succ n
QED. \square vsv.

Induction on numbers

Induction applies to other enumerable types isomorphic with natural numbers, e.g. Haskell integers:

```
replicate :: Integer -> a -> [a]
replicate O _ = []
replicate n x = x : replicate (n-1) x
```


Induction on numbers

Induction applies to other enumerable types isomorphic with natural numbers, e.g. Haskell integers:
replicate :: Integer -> a -> [a]
replicate 0 _ = []
replicate n x $=\mathrm{x}$: replicate ($\mathrm{n}-1$) x

Property to show:
length (replicate n x) $=\mathrm{n}$ for all $\mathrm{n} \geq 0$.

Induction on numbers

Base case:

length (replicate 0 x) =
length [] =
0

Induction on numbers

Base case:

length (replicate 0 x) =
length [] =
0

Induction step:
length (replicate ($n+1$) x) =
length (x : replicate $n \mathrm{x}$) =
1 + length (replicate $n \mathrm{x}$) =
$1+\mathrm{n}=$
$\mathrm{n}+1$
QED
Note the active use of the induction hypothesis!

Induction on lists

Consider:
reverse :: [a] -> [a]
reverse [] $=[]$
reverse (x:xs)
$=$ reverse xs ++ [x]
Let us prove:
reverse (reverse xs) = xs

Induction on lists

Base case:

```
reverse (reverse []) =
reverse [] =
[]
```


Induction on lists

Base case:

```
reverse (reverse []) =
```

reverse [] =
[]
Inductive case:
reverse (reverse ($\mathrm{x}: \mathrm{xs}$)) $=$
reverse (reverse xs ++ [x]) =
reverse [x] ++ reverse (reverse xs)) =
[x] ++ reverse (reverse xs)) =
$[\mathrm{X}]++\mathrm{XS}=$
X : XS

Induction on lists

Base case:
reverse (reverse []) =
reverse [] =
[]
Inductive case:
reverse (reverse (x:xs)) =
reverse (reverse xs ++ [x]) =
reverse [x] ++ reverse (reverse xs)) =
[x] ++ reverse (reverse xs)) =
[x] ++ xs =
x : xs
We have used a lemma: the distributivity of reverse over append:
reverse (xs ++ys$)=$ reverse ys ++ reverse xs

Induction on lists

Base case (because ++ is defined by pattern matching over the first argument):

```
reverse ([] ++ ys) =
reverse ys =
reverse ys ++ [] =
reverse ys ++ reverse []
```


Induction on lists

Base case (because ++ is defined by pattern matching over the first argument):

```
reverse ([] ++ ys) =
reverse ys =
reverse ys ++ [] =
reverse ys ++ reverse []
```

Inductive case:

```
reverse ((x:xs) ++ ys) =
reverse (x : (xs ++ ys)) =
reverse (xs ++ ys) ++ [x] =
(reverse ys ++ reverse xs) ++ [x] =
reverse ys ++ (reverse xs ++ [x]) =
reverse ys ++ reverse (x:xs)
```


Induction on lists

Remember functor laws:
fmap id = id
fmap (g . h) = fmap g . fmap h
We can verify them using induction over lists (or, more generally, over recursive data structures, or functor types), where fmap is meaningful.

Induction on lists

Remember functor laws:
fmap id = id
fmap (g . h) = fmap g . fmap h
We can verify them using induction over lists (or, more generally, over recursive data structures, or functor types), where fmap is meaningful.

We use
fmap :: (a -> b) -> [a] -> [b]
fmap g [] = []
fmap g (x:xs) = g x : fmap g xs
Whiteboard: show the first law.

Induction on lists

Remember functor laws:
fmap id = id
fmap (g . h) = fmap g . fmap h
We can verify them using induction over lists (or, more generally, over recursive data structures, or functor types), where fmap is meaningful.

We use
fmap :: (a -> b) -> [a] -> [b]
fmap g [] = []
fmap g (x:xs) = g x : fmap g xs
Whiteboard: show the first law.
Exercise: prove the second law.

Making append vanish

```
reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]
```

Complexity?

Making append vanish

```
reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]
```

Complexity?
(++) linear with respect to the first argument, thus reverse is quadratic wrt to the length of its argument.

How to improve it?

Making append vanish

```
reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]
```

Complexity?
(++) linear with respect to the first argument, thus reverse is quadratic wrt to the length of its argument.

How to improve it?
The trick: define a more general function reverse' combining the behaviour of reverse and ++, so that always
reverse' $x s$ ys = reverse xs ++ ys
Then reverse would just become
reverse xs = reverse' xs []

Constructing reverse'

Let's verify the equation by induction on xs.

Base case:

```
reverse' [] ys =
reverse [] ++ ys =
[] ++ ys =
ys
```

Inductive case:

Constructing reverse'

Let's verify the equation by induction on xs.

 Base case:```
reverse' [] ys =
reverse [] ++ ys =
[] ++ ys =
ys
```

Inductive case:

```
reverse' (x:xs) ys =
reverse (x:xs) ++ ys =
(reverse xs ++ [x]) ++ ys =
reverse xs ++ ([x] ++ ys) =
reverse' xs ([x] ++ ys) =
reverse' xs (x:ys)
```


## Constructing reverse'

From the construction we can conclude that
reverse' :: [a] -> [a] -> [a]
reverse' [] ys = ys
reverse' (x:xs) ys = reverse' $x s$ (x:ys)
suffices to show by induction that
reverse' xs ys = reverse xs ++ ys
As the definition does not use reverse, we can redefine it as

```
reverse :: [a] -> [a]
reverse xs = reverse' xs []
```

Complexity? Linear!

## Induction on tree-like types

```
data Tree = Leaf Int | Node Tree Tree
flatten :: Tree -> [Int]
flatten (Leaf n) = [n]
flatten (Node l r) = flatten l ++ flatten r
```

Append makes it inefficient. Let's then do the trick again.

## Induction on tree-like types

```
data Tree = Leaf Int | Node Tree Tree
flatten :: Tree -> [Int]
flatten (Leaf n) = [n]
flatten (Node l r) = flatten l ++ flatten r
```

Append makes it inefficient. Let's then do the trick again.
flatten' t ns = flatten $\mathrm{t}+\mathrm{n}_{\mathrm{n}}$
Now induction must work on branches instead of successors.

## Constructing flatten'

## Base case:

flatten' (Leaf n) ns =
flatten (Leaf $n$ ) ++ ns =
[n] ++ ns =
n : ns

## Constructing flatten'

## Base case:

flatten' (Leaf n) ns =
flatten (Leaf $n$ ) ++ $n s=$
[n] ++ ns =
n : ns
Inductive case:
flatten' (Node l r) ns =
(flatten l ++ flatten $r$ ) ++ ns =
flatten l ++ (flatten $\mathrm{r}++\mathrm{ns}$ ) =
flatten' l (flatten r ++ ns) =
flatten' l (flatten' r ns)

## Constructing flatten'

So the definition:
flatten' :: Tree -> [Int] -> [Int]
flatten' (Leaf n) ns = n : ns
flatten' (Node l r) ns = flatten' l (flatten' r ns)
satisfies the specification we had for flatten'.

## Constructing flatten'

So the definition:
flatten' :: Tree -> [Int] -> [Int]
flatten' (Leaf n) ns = n : ns
flatten' (Node l r) ns = flatten' l (flatten' r ns)
satisfies the specification we had for flatten'.
Finally we can define
flatten :: Tree -> [Int]
flatten $\mathrm{t}=\mathrm{flatten}$ ' t []
Again: much more efficient.

## HipSpec: automating proofs

Moa Johansson @ Chalmers.

