EDAN40 Some Theory

EDAN40: Functional Programming
Some Computability Theory

Jacek Malec
Dept. of Computer Science, Lund University, Sweden
May 17th, 2023

Jacek Malec, http://rss.cs.lth.se 1(32)

EDAN40 Some Theory

Topics for today

@ Categories, functors, monads
© Lambda-calculus

@ Recursive functions

© Turing Machines

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

A link: Erik Meyer @ FooCafé

https://www.youtube.com/watch?v=JMP6gI5smLHc

Jacek Malec, http://rss.cs.lth.se

https://www.youtube.com/watch?v=JMP6gI5mLHc

EDAN40 Some Theory

Categories

A category C consists of the following three entities:
@ Aclass ob(C) of objects;

@ A class hom(C) of morphisms (also called maps or arrows).
Each morphism f has a unique source object a and target
object b. The expression f : a — b is read “f is a morphism
from ato b”. hom(a, b) denotes the class of all morphisms
from ato b;

© morphism composition (see next slide).

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

Categories

A category C consists of the following three entities:
@ objects (see previous slide);
© morphisms (see previous slide);
© A binary operation o, called composition of morphisms such
that the following axioms hold:
Associativity: If f:a— b,g: b— c,h: c— dthen
ho(gof)=(hog)of,and
Identity: For every object x there exists a morphism
1x : X — x called the identity morphism for x,

such that for every morphism f : a — b we have
1pof=Ff="Ffol,

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

Functors

Functors are structure-preserving maps between categories:

A (covariant) functor F from a category C to a category D, written
F: C — D, consists of:

@ for each object x in C, an object F(x) in D;
@ for each morphism f: x — y in C, a morphism
F(f) : F(x) = F(y),
such that the following two properties hold:
@ For every object x in C, F(1x) = 1F(x);
@ Forall morphisms f: x — yandg:y — z,
F(gof)=F(g)o F(f).
Informally: a contravariant functor is like covariant, except that it
reverses all morphisms (arrows).

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

The functor class

Consider the following class:

class Functor f where
fmap :: (@ -=>Db) ->fa->fb

The fmap function generalizes the map function used previously.

instance Functor [] where
fmap = map

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

Functor axioms

Functor laws (not enforced by Haskell but necessary to ensure
correctness):

fmap id = id
fmap (f.g) = (fmap f) . (fmap g)

The laws means that fmap does not alter the structure of the functor

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

A Functor example

Another instance:

data Tree a = Leaf a | Branch (Tree a) (Tree a)
instance Functor Tree where
fmap f (Leaf x) = Leaf (f x)
fmap f (Branch t1 t2) = Branch (fmap f t1) (fmap f t2)

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

Applicative functors

class (Functor f) => Applicative f where
pure :: a -> f a
(<¥>) :: f(a->b) >fa->fhb

instance Applicative Maybe where
pure = Just
Nothing <*> _ = Nothing
(Just £) <*> something = fmap f something

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

The Monad class

class Monad m where

>>=) ::ma->(@->mb) ->mb
(>>) i:ma->mb->mb
return :: a ->m a

fail :: String -> m a

Minimal complete definition requires only >>= and return, as the
other two have the default definition:

m>>= _ -> k
error s

m >> k
fail s

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

Re: definition

Kleisli triple
@ A type construction: for type a create Ma
Q@ A unit function a -+ Ma (return in Haskell)

© A binding operation of polymorfic type
Ma — (a — Mb) — Mb. Four stages (informally):

@ The monad-related structure on the first argument is "pierced"
to expose any number of values in the underlying type a.
The given function is applied to all of those values to obtain
values of type (M b).
The monad-related structure on those values is also pierced,
exposing values of type b.
Finally, the monad-related structure is reassembled over all of
the results, giving a single value of type (M b).

© © ©o

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

Categorical view on Haskell monads

Instead of return and bind, we can define a monad by return (or
pure), fmap and join:

fmap :: (@ -=>Db) ->ma ->mb
join :: m (ma) ->m a

with the mutual relations as follows:

(fmap f) t == t >>= (\x -> return (f x))
join n ==n >>= id

t >>=g == join ((fmap g) t)

The first one is sometimes written as:

fmap £ t == t >>= (return . f)

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

More laws

For pointed functors in the same category:
return . £ = fmap £ . return
What is a pointed functor then?

class Pointed f where
return :: a -> f a
-- point :: a -> f a

Monad laws expressed with join:

join . fmap join = join . join

join . fmap return = join . return = id
join . fmap (fmap f) = fmap f . join

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

Yet another variant

In the monad context we define sometimes:
1iftM :: (Monad m) => (a ->b) -> (ma ->m b)
liftM £ = \x -> do {x’ <- x; return (f x’) }

So that e.g. 1iftM sin (Just 0) evaluates to Just 0.0

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

Relation to category theory

Intuitively:

“A Haskell monad corresponds to a strong monad in a cartesian
closed category. A category is cartesian closed if it has enough
structure to interpret A-calculus. In particular, associated with any
pair of objects (types) x and y there is an object [x — y]
representing the space of all functions from x to y.
M is a functor if there exists (for any arrow f) the arrow fmap f
obeying the functor laws. A functor is strong if it itself is
represented by a single arrow fmap.”

P. Wadler (1990)
“A monad is a monoid in the category of endofunctors”

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

The List monad

instance Functor [] where
fmap = map

instance Monad [] where
return x = [x]
xs >>= f = concat (map f xs)
fail s [1

instance MonadPlus [] where
mzero = []
mplus = (++)

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

The Maybe monad

instance Functor Maybe where
fmap £ (Just x) = Just (f %)
fmap f Nothing = Nothing

instance Monad Maybe where

return x = Just x
Just x >>=f =f x
Nothing >>= f = Nothing

instance MonadPlus Maybe where

mzero = Nothing
Nothing ‘mplus‘ ys = ys
xs ‘mplus‘ ys = Xs

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

Re: definition

Monad axioms:
@ return acts as a neutral element of >>=.

(return x) >>=f < f x

m>>=return < m

@ Binding two functions in succession is the same as binding
one function that can be determined from them.

(m>>=f)>>=g< m>>=M.(f x >>= Q)

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

Lambda calculus

@ Introduced by Alonzo Church (1933)
@ A set of A-terms and rules to manipulate them
@ Origin of functional programming (LISP, 1960)

@ Equivalent expressivity to recursive functions (Gddel) and
Turing Machines

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

Lambda calculus, intro

AXx.E(x)

denotes a function that, given input x, computes E(x). To apply
this function, one substitutes the input for the variable and
evaluates the body, e.g.:

AX.(x +1)

is the successor function on natural numbers. To apply it for input 7
one performs substitution and then evaluates:

(M.(x+1)7—(7+1)— 8

Note: curried form!

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

An example

A higher-order example:
A AG.AX.F(9(X))

Applying it to the successor function Ax.(x + 1) twice yields:
(AFAG M\ F(g(x)(Ay.(y +1))(Az(z+ 1))
= (Ag-Ax((Ay.(y +1))(9(x))))(Az.(z + 1))
= AMX.((Ay.(y + 1))(Az.(z+ 1))x))

Ay-(y 1)) x +1))
= AX((x+1)+1)

(y
(

— AX.(

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

Pure lambda calculus

In pure A-calculus, there are only variables f, g, h,....x,y, z, ... and
operators for A-abstraction and application.

A-terms are recursively created from these:
@ any variable x is a A-term;
@ if M and N are A-terms, then MN is a A-term (functional
application);
@ if Mis a A\-term and x is a variable, then Ax.M is a A-term
(functional abstraction).

Application is not associative, i.e. usually (MN)P # M(NP).
MNP is interpreted as (MN)P.

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

Some interesting facts

@ In pure A-calculus, A-terms serve both as functions and as
data. (+1 above was informall)

@ The substitution rule above is called S-reduction.
@ Renaming variables (e.g. Ax.zx to \y.zy) is called a-reduction.

@ Computations in A-calculus is performed by 5-reducing terms
whenever possible and as long as possible.

@ Theorem (Church-Rosser): the order of reductions does not
matter (as there will always be some common final reduction).

@ Atermisin normal form if no s-reductions apply (halting state
of TM).

@ There are terms with no normal form (corresponding to
non-halting computations of TMs). E.g. (Ax.xx)(AXx.xx).

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

Church numerals

0 U M.AX.x
df
1 = M x.fx
2 L AFAXF(x)

3 L Af X f(F(fx))
n % A fax.fx

Then successor may be defined as:

AMAFAX.f(mix)

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

Church numbers

type ChurchNatural a = (a -> a) -> (a -> a)

zeroC, oneC, twoC :: ChurchNatural a
zeroC f = id -- zeroC = const id
oneC f =1 -- oneC = id

twoC f = £f.f

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

Church numbers

succCn f = f.(n f)

threeC = succC twoC
plusC x y £ = (x £).(y £)
timesC x y = X.y

expC x y =y X

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

Church numbers

showC x = show $ (x (+1)) 0

pc =
tc =
xc =

showC $ plusC twoC threeC
showC $ timesC twoC threeC
showC $ expC twoC threeC

Jacek Malec, htf

Irss.cs.lth.se

EDAN40 Some Theory

Recursive functions

Functions N¥ — N, intuitively representing all the computable
functions (Gddel):
@ Successor: the function s : N — N given by s(x) = x + 1 is
computable;
@ Zero: the function z : N° — N given by z() = 0 is computable;
© Projections: The functions =7 : N” — N given by
(X1, ..., Xn) = Xk, for 1 < k < nis computable;
@ Composition: If f : N — Nand g1,...,gx : N — N are
computable, then so is the function fo (gy,...,gx) : N = N
that on input X = xq, ..., Xn gives f(g1(X), ..., gk(X)).

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

Recursive functions

@ Primitive recursion: If hj: N"~' — N and g; : N™tk — N are
computable, 1 < i < k, then so are functions
fi: NT"— N;1 < | < k, defined by mutual induction as follows:

£0,%) < (%),

fix+1,%) L gi(x, &, £ (X, 8), ooy Fe(X, R)),

where X = Xo, ..., Xp.

© Unbounded minimization: If g : N1 — N is computable, then
so is the function f : N — N that on input X = xq, ..., X, gives
the least y such that g(z, X) is defined for all z < y and
g(y,X) = 0if such a y exists and is undefined otherwise. We
denote this by

f(X) = py-(9(y, %) = 0).

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

Recursive functions

@ primitive recursive functions obey (1) — (5)
@ u-recursive functions obey (1) — (6)

@ There exists a non-primitive (total) recursive function
(Ackermann’s function)

A0, y) =y +1,
Ax+1,0)=A(x,1),
Ax+1,y+1)=Ax, Alx +1,y)).

@ Primitive recursive functions are total, u-recursive may be
partial.

@ Recursive functions correspond to Turing Machines.

Jacek Malec, http://rss.cs.lth.se

EDAN40 Some Theory

Turing Machine

a tape

an alphabet (with a “blank”)

a head over the tape

read or write operation

left or right tape movement

state (finitely many)

transition function (may be partial)

J:(Q\F)xI'=QxT x{L,R}
@ Universal Turing Machines!
@ Busy Beaver problem - fun

Jacek Malec, http://rss.cs.lth.se

