
EDAN40 Some Theory

EDAN40: Functional Programming
Some Computability Theory

Jacek Malec
Dept. of Computer Science, Lund University, Sweden

May 17th, 2023

Jacek Malec, http://rss.cs.lth.se 1(32)

EDAN40 Some Theory

Topics for today

1 Categories, functors, monads
2 Lambda-calculus
3 Recursive functions
4 Turing Machines

Jacek Malec, http://rss.cs.lth.se 2(32)

EDAN40 Some Theory

A link: Erik Meyer @ FooCafé

https://www.youtube.com/watch?v=JMP6gI5mLHc

Jacek Malec, http://rss.cs.lth.se 3(32)

https://www.youtube.com/watch?v=JMP6gI5mLHc

EDAN40 Some Theory

Categories

A category C consists of the following three entities:
1 A class ob(C) of objects;
2 A class hom(C) of morphisms (also called maps or arrows).

Each morphism f has a unique source object a and target
object b. The expression f : a→ b is read “f is a morphism
from a to b”. hom(a,b) denotes the class of all morphisms
from a to b;

3 morphism composition (see next slide).

Jacek Malec, http://rss.cs.lth.se 4(32)

EDAN40 Some Theory

Categories

A category C consists of the following three entities:
1 objects (see previous slide);
2 morphisms (see previous slide);
3 A binary operation ◦, called composition of morphisms such

that the following axioms hold:
Associativity: If f : a→ b,g : b → c,h : c → d then

h ◦ (g ◦ f) = (h ◦ g) ◦ f , and
Identity: For every object x there exists a morphism

1x : x → x called the identity morphism for x ,
such that for every morphism f : a→ b we have
1b ◦ f = f = f ◦ 1a.

Jacek Malec, http://rss.cs.lth.se 5(32)

EDAN40 Some Theory

Functors

Functors are structure-preserving maps between categories:

A (covariant) functor F from a category C to a category D, written
F : C → D, consists of:

for each object x in C, an object F (x) in D;
for each morphism f : x → y in C, a morphism
F (f) : F (x)→ F (y),

such that the following two properties hold:
For every object x in C, F (1x) = 1F (x);
For all morphisms f : x → y and g : y → z,
F (g ◦ f) = F (g) ◦ F (f).

Informally: a contravariant functor is like covariant, except that it
reverses all morphisms (arrows).

Jacek Malec, http://rss.cs.lth.se 6(32)

EDAN40 Some Theory

The functor class

Consider the following class:

class Functor f where
fmap :: (a -> b) -> f a -> f b

The fmap function generalizes the map function used previously.

instance Functor [] where
fmap = map

Jacek Malec, http://rss.cs.lth.se 7(32)

EDAN40 Some Theory

Functor axioms

Functor laws (not enforced by Haskell but necessary to ensure
correctness):

fmap id = id
fmap (f.g) = (fmap f) . (fmap g)

The laws means that fmap does not alter the structure of the functor

Jacek Malec, http://rss.cs.lth.se 8(32)

EDAN40 Some Theory

A Functor example

Another instance:

data Tree a = Leaf a | Branch (Tree a) (Tree a)
instance Functor Tree where

fmap f (Leaf x) = Leaf (f x)
fmap f (Branch t1 t2) = Branch (fmap f t1) (fmap f t2)

Jacek Malec, http://rss.cs.lth.se 9(32)

EDAN40 Some Theory

Applicative functors

class (Functor f) => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

instance Applicative Maybe where
pure = Just
Nothing <*> _ = Nothing
(Just f) <*> something = fmap f something

Jacek Malec, http://rss.cs.lth.se 10(32)

EDAN40 Some Theory

The Monad class

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
return :: a -> m a
fail :: String -> m a

Minimal complete definition requires only >>= and return, as the
other two have the default definition:

m >> k = m >>= _ -> k
fail s = error s

Jacek Malec, http://rss.cs.lth.se 11(32)

EDAN40 Some Theory

Re: definition

Kleisli triple
1 A type construction: for type a create Ma
2 A unit function a→ Ma (return in Haskell)
3 A binding operation of polymorfic type

Ma→ (a→ Mb)→ Mb. Four stages (informally):
1 The monad-related structure on the first argument is "pierced"

to expose any number of values in the underlying type a.
2 The given function is applied to all of those values to obtain

values of type (M b).
3 The monad-related structure on those values is also pierced,

exposing values of type b.
4 Finally, the monad-related structure is reassembled over all of

the results, giving a single value of type (M b).

Jacek Malec, http://rss.cs.lth.se 12(32)

EDAN40 Some Theory

Categorical view on Haskell monads

Instead of return and bind, we can define a monad by return (or
pure), fmap and join:

fmap :: (a -> b) -> m a -> m b
join :: m (m a) -> m a

with the mutual relations as follows:

(fmap f) t == t >>= (\x -> return (f x))
join n == n >>= id

t >>= g == join ((fmap g) t)

The first one is sometimes written as:

fmap f t == t >>= (return . f)

Jacek Malec, http://rss.cs.lth.se 13(32)

EDAN40 Some Theory

More laws

For pointed functors in the same category:

return . f = fmap f . return

What is a pointed functor then?

class Pointed f where
return :: a -> f a

-- point :: a -> f a

Monad laws expressed with join:

join . fmap join = join . join
join . fmap return = join . return = id
join . fmap (fmap f) = fmap f . join

Jacek Malec, http://rss.cs.lth.se 14(32)

EDAN40 Some Theory

Yet another variant

In the monad context we define sometimes:

liftM :: (Monad m) => (a -> b) -> (m a -> m b)

liftM f = \x -> do {x’ <- x; return (f x’) }

So that e.g. liftM sin (Just 0) evaluates to Just 0.0

Jacek Malec, http://rss.cs.lth.se 15(32)

EDAN40 Some Theory

Relation to category theory

Intuitively:

“A Haskell monad corresponds to a strong monad in a cartesian
closed category. A category is cartesian closed if it has enough
structure to interpret λ-calculus. In particular, associated with any
pair of objects (types) x and y there is an object [x → y]
representing the space of all functions from x to y .
M is a functor if there exists (for any arrow f) the arrow fmap f
obeying the functor laws. A functor is strong if it itself is
represented by a single arrow fmap.”

P. Wadler (1990)
“A monad is a monoid in the category of endofunctors”

Jacek Malec, http://rss.cs.lth.se 16(32)

EDAN40 Some Theory

The List monad

instance Functor [] where
fmap = map

instance Monad [] where
return x = [x]
xs >>= f = concat (map f xs)
fail s = []

instance MonadPlus [] where
mzero = []
mplus = (++)

Jacek Malec, http://rss.cs.lth.se 17(32)

EDAN40 Some Theory

The Maybe monad

instance Functor Maybe where
fmap f (Just x) = Just (f x)
fmap f Nothing = Nothing

instance Monad Maybe where
return x = Just x
Just x >>= f = f x
Nothing >>= f = Nothing

instance MonadPlus Maybe where
mzero = Nothing
Nothing ‘mplus‘ ys = ys
xs ‘mplus‘ ys = xs

Jacek Malec, http://rss.cs.lth.se 18(32)

EDAN40 Some Theory

Re: definition

Monad axioms:
1 return acts as a neutral element of >>=.

(return x) >>= f ⇔ f x

m >>= return⇔ m

2 Binding two functions in succession is the same as binding
one function that can be determined from them.

(m >>= f) >>= g ⇔ m >>= λx .(f x >>= g)

Jacek Malec, http://rss.cs.lth.se 19(32)

EDAN40 Some Theory

Lambda calculus

Introduced by Alonzo Church (1933)
A set of λ-terms and rules to manipulate them
Origin of functional programming (LISP, 1960)
Equivalent expressivity to recursive functions (Gödel) and
Turing Machines

Jacek Malec, http://rss.cs.lth.se 20(32)

EDAN40 Some Theory

Lambda calculus, intro

λx .E(x)

denotes a function that, given input x , computes E(x). To apply
this function, one substitutes the input for the variable and
evaluates the body, e.g.:

λx .(x + 1)

is the successor function on natural numbers. To apply it for input 7
one performs substitution and then evaluates:

(λx .(x + 1))7→ (7 + 1)→ 8

Note: curried form!
Jacek Malec, http://rss.cs.lth.se 21(32)

EDAN40 Some Theory

An example

A higher-order example:

λf .λg.λx .f (g(x))

Applying it to the successor function λx .(x + 1) twice yields:

(λf .λg.λx .f (g(x)))(λy .(y + 1))(λz.(z + 1))

→ (λg.λx .((λy .(y + 1))(g(x))))(λz.(z + 1))

→ λx .((λy .(y + 1))((λz.(z + 1))x))

→ λx .((λy .(y + 1))(x + 1))

→ λx .((x + 1) + 1)

Jacek Malec, http://rss.cs.lth.se 22(32)

EDAN40 Some Theory

Pure lambda calculus

In pure λ-calculus, there are only variables f ,g,h, ..., x , y , z, ... and
operators for λ-abstraction and application.

λ-terms are recursively created from these:
any variable x is a λ-term;
if M and N are λ-terms, then MN is a λ-term (functional
application);
if M is a λ-term and x is a variable, then λx .M is a λ-term
(functional abstraction).

Application is not associative, i.e. usually (MN)P 6= M(NP).
MNP is interpreted as (MN)P.

Jacek Malec, http://rss.cs.lth.se 23(32)

EDAN40 Some Theory

Some interesting facts

In pure λ-calculus, λ-terms serve both as functions and as
data. (+1 above was informal!)
The substitution rule above is called β-reduction.
Renaming variables (e.g. λx .zx to λy .zy) is called α-reduction.
Computations in λ-calculus is performed by β-reducing terms
whenever possible and as long as possible.
Theorem (Church-Rosser): the order of reductions does not
matter (as there will always be some common final reduction).
A term is in normal form if no β-reductions apply (halting state
of TM).
There are terms with no normal form (corresponding to
non-halting computations of TMs). E.g. (λx .xx)(λx .xx).

Jacek Malec, http://rss.cs.lth.se 24(32)

EDAN40 Some Theory

Church numerals

0 df
= λf .λx .x

1 df
= λf .λx .fx

2 df
= λf .λx .f (fx)

3 df
= λf .λx .f (f (fx))

. . .

n df
= λf .λx .f nx

. . .

Then successor may be defined as:

λm.λf .λx .f (mfx)

Jacek Malec, http://rss.cs.lth.se 25(32)

EDAN40 Some Theory

Church numbers

type ChurchNatural a = (a -> a) -> (a -> a)

zeroC, oneC, twoC :: ChurchNatural a
zeroC f = id -- zeroC = const id
oneC f = f -- oneC = id
twoC f = f.f

Jacek Malec, http://rss.cs.lth.se 26(32)

EDAN40 Some Theory

Church numbers

succC n f = f.(n f)
threeC = succC twoC

plusC x y f = (x f).(y f)
timesC x y = x.y
expC x y = y x

Jacek Malec, http://rss.cs.lth.se 27(32)

EDAN40 Some Theory

Church numbers

showC x = show $ (x (+1)) 0

pc = showC $ plusC twoC threeC
tc = showC $ timesC twoC threeC
xc = showC $ expC twoC threeC

Jacek Malec, http://rss.cs.lth.se 28(32)

EDAN40 Some Theory

Recursive functions

Functions Nk → N, intuitively representing all the computable
functions (Gödel):

1 Successor: the function s : N → N given by s(x) = x + 1 is
computable;

2 Zero: the function z : N0 → N given by z() = 0 is computable;
3 Projections: The functions πn

k : Nn → N given by
πn

k (x1, ..., xn) = xk , for 1 ≤ k ≤ n is computable;
4 Composition: If f : Nk → N and g1, ...,gk : Nn → N are

computable, then so is the function f ◦ (g1, ...,gk) : Nn → N
that on input x̂ = x1, ..., xn gives f (g1(x̂), ...,gk (x̂)).

Jacek Malec, http://rss.cs.lth.se 29(32)

EDAN40 Some Theory

Recursive functions
5 Primitive recursion: If hi : Nn−1 → N and gi : Nn+k → N are

computable, 1 ≤ i ≤ k , then so are functions
fi : Nn → N,1 ≤ i ≤ k , defined by mutual induction as follows:

fi(0, x̂)
df
= hi(x̂),

fi(x + 1, x̂)
df
= gi(x , x̂ , f1(x , x̂), ..., fk (x , x̂)),

where x̂ = x2, ..., xn.
6 Unbounded minimization: If g : Nn+1 → N is computable, then

so is the function f : Nn → N that on input x̂ = x1, ..., xn gives
the least y such that g(z, x̂) is defined for all z ≤ y and
g(y , x̂) = 0 if such a y exists and is undefined otherwise. We
denote this by

f (x̂) = µy .(g(y , x̂) = 0).

Jacek Malec, http://rss.cs.lth.se 30(32)

EDAN40 Some Theory

Recursive functions

primitive recursive functions obey (1) – (5)
µ-recursive functions obey (1) – (6)
There exists a non-primitive (total) recursive function
(Ackermann’s function)

A(0, y) = y + 1,

A(x + 1,0) = A(x ,1),

A(x + 1, y + 1) = A(x ,A(x + 1, y)).

Primitive recursive functions are total, µ-recursive may be
partial.
Recursive functions correspond to Turing Machines.

Jacek Malec, http://rss.cs.lth.se 31(32)

EDAN40 Some Theory

Turing Machine

a tape
an alphabet (with a “blank”)
a head over the tape
read or write operation
left or right tape movement
state (finitely many)
transition function (may be partial)

δ : (Q \ F)× Γ→ Q × Γ× {L,R}

Universal Turing Machines!
Busy Beaver problem - fun

Jacek Malec, http://rss.cs.lth.se 32(32)

