Categories

A category C consists of the following three entities:

- A class $\text{ob}(C)$ of objects;
- A class $\text{hom}(C)$ of morphisms (also called maps or arrows). Each morphism f has a unique source object a and target object b. The expression $f : a \to b$ is read “f is a morphism from a to b”. $\text{hom}(a,b)$ denotes the class of all morphisms from a to b;
- morphism composition (see next slide).
Categories

A category C consists of the following three entities:

- **objects** (see previous slide);
- **morphisms** (see previous slide);
- A binary operation \circ, called *composition of morphisms* such that the following axioms hold:

 Associativity: If $f : a \to b$, $g : b \to c$, $h : c \to d$ then $h \circ (g \circ f) = (h \circ g) \circ f$, and

 Identity: For every object x there exists a morphism $1_x : x \to x$ called the *identity morphism* for x, such that for every morphism $f : a \to b$ we have $1_b \circ f = f = f \circ 1_a$.

Functors

Functors are structure-preserving maps between categories:

A (covariant) functor F from a category C to a category D, written $F : C \to D$, consists of:

- for each object x in C, an object $F(x)$ in D;
- for each morphism $f : x \to y$ in C, a morphism $F(f) : F(x) \to F(y)$,

such that the following two properties hold:

- For every object x in C, $F(1_x) = 1_{F(x)}$;
- For all morphisms $f : x \to y$ and $g : y \to z$, $F(g \circ f) = F(g) \circ F(f)$.

Informally: a *contravariant* functor is like covariant, except that it reverses all morphisms (arrows).

The functor class

Consider the following class:

```haskell
class Functor f where
  fmap :: (a -> b) -> f a -> f b
```

The `fmap` function generalizes the `map` function used previously.

```haskell
instance Functor [] where
  fmap = map
```

Functor axioms

Functor laws (not enforced by Haskell but necessary to ensure correctness):

- `fmap id = id`
- `fmap (f.g) = (fmap f) . (fmap g)`

The laws means that `fmap` does not alter the structure of the functor.
A Functor example

Another instance:

```haskell
data Tree a = Leaf a | Branch (Tree a) (Tree a)
instance Functor Tree where
  fmap f (Leaf x) = Leaf (f x)
  fmap f (Branch t1 t2) = Branch (fmap f t1) (fmap f t2)
```

Applicative functors

```haskell
class (Functor f) => Applicative f where
  pure :: a -> f a
  (<>*) :: f (a -> b) -> f a -> f b

instance Applicative Maybe where
  pure = Just
  Nothing <*> _ = Nothing
  (Just f) <*> something = fmap f something
```

The Monad class

```haskell
class Monad m where
  (>>=) :: m a -> (a -> m b) -> m b
  (>>) :: m a -> m b -> m b
  return :: a -> m a
  fail :: String -> m a

Minimal complete definition requires only >>= and return, as the other two have the default definition:

- `m >>= k = m >>= \_ \_ -> k`
- `fail s = error s`
```

Kleisli triple

1. **Type construction**: for type `a` create `Ma`
2. **Unit function**: `a -> Ma` (return in Haskell)
3. **Binding operation**: of polymorphic type `Ma -> (a -> Mb) -> Mb`. Four stages (informally):
 - The monad-related structure on the first argument is "pierced" to expose any number of values in the underlying type `a`.
 - The given function is applied to all of those values to obtain values of type `Mb`.
 - The monad-related structure on those values is also pierced, exposing values of type `b`.
 - Finally, the monad-related structure is reassembled over all of the results, giving a single value of type `Mb`.

Instead of \textit{return} and \textit{bind}, we can define a monad by \textit{return} (or \textit{pure}), \textit{fmap} and \textit{join}:

\begin{verbatim}
 fmap :: (a -> b) -> m a -> m b
 join :: m (m a) -> m a
\end{verbatim}

with the mutual relations as follows:

\begin{verbatim}
 (fmap f) t == t >>= (\x -> return (f x))
 join n == n >>= id
\end{verbatim}

The first one is sometimes written as:

\begin{verbatim}
 fmap f t == t >>= (return . f)
\end{verbatim}

For \textit{pointed functors} in the same category:

\begin{verbatim}
 return . f = fmap f . return
\end{verbatim}

What is a \textit{pointed functor} then?

\begin{verbatim}
 class Pointed f where
 return :: a -> f a
 -- point :: a -> f a
\end{verbatim}

\textbf{Monad laws expressed with} \textit{join}:

\begin{verbatim}
 join . fmap join = join . join
 join . fmap return = join . return = id
 join . fmap (fmap f) = fmap f . join
\end{verbatim}

Yet another variant

In the monad context we define sometimes:

\begin{verbatim}
 liftM :: (Monad m) => (a -> b) -> (m a -> m b)
 liftM f = \x -> do {x' <- x; return (f x')}
\end{verbatim}

So that e.g. \texttt{liftM sin (Just 0)} evaluates to \texttt{Just 0.0}

Relation to category theory

Intuitively:

“A Haskell monad corresponds to a \textit{strong monad} in a \textit{cartesian closed category}. A category is cartesian closed if it has enough structure to interpret \lambda-calculus. In particular, associated with any pair of objects (types) \(x\) and \(y\) there is an object \([x \rightarrow y]\) representing the space of all functions from \(x\) to \(y\).

\(M\) is a functor if there exists (for any arrow \(f\)) the arrow \(fmap f\) obeying the functor laws. A functor is \textit{strong} if it itself is represented by a single arrow \(fmap\).”

P. Wadler (1990)

“A monad is a monoid in the category of endofunctors”
The List monad

instance Monad [] where
 return x = [x]
 xs >>= f = concat (map f xs)
 fail s = []

instance MonadPlus [] where
 mzero = []
 mplus = (++)

instance Functor [] where
 fmap = map

The Maybe monad

instance Monad Maybe where
 return x = Just x
 Just x >>= f = f x
 Nothing >>= f = Nothing

instance MonadPlus Maybe where
 mzero = Nothing
 Nothing 'mplus' ys = ys
 xs 'mplus' ys = xs

instance Functor Maybe where
 fmap f (Just x) = Just (f x)
 fmap f Nothing = Nothing

Re: definition

Monad axioms:
 - `return` acts as a neutral element of `>>=`,
 \[(return x) >>= f \leftrightarrow f x\]
 \[m >>= return \leftrightarrow m\]
 - Binding two functions in succession is the same as binding one function that can be determined from them.
 \[(m >>= f) >>= g \leftrightarrow m >>= \lambda x. (f x >>= g)\]

We can restate it in a cleaner way (Thomson). Define

\[\triangleright\triangleright\triangleright :: Monad m => (a \rightarrow m b) \rightarrow (b \rightarrow m c) \rightarrow (a \rightarrow m c)\]
\[f \triangleright\triangleright\triangleright g = \lambda x. (f x) \triangleright\triangleright\triangleright g\]

Now, the monad axioms may be written as:

\[\triangleright\triangleright\triangleright return \triangleright\triangleright\triangleright f = f\]
\[f \triangleright\triangleright\triangleright return = f\]
\[(f \triangleright\triangleright\triangleright g) \triangleright\triangleright\triangleright h = f \triangleright\triangleright\triangleright (g \triangleright\triangleright\triangleright h)\]

Note: In Thomson’s book `\triangleright\triangleright\triangleright` is `@>`. Note 2: It is so called *Kleisli composition.*
Lambda calculus

- Introduced by Alonzo Church (1933)
- A set of λ-terms and rules to manipulate them
- Origin of functional programming (LISP, 1960)
- Equivalent expressivity to recursive functions (Gödel) and Turing Machines

$\lambda x. E(x)$ denotes a function that, given input x, computes $E(x)$. To apply this function, one substitutes the input for the variable and evaluates the body:

$\lambda x.(x + 1)$ is the successor function on natural numbers. To apply it for input 7 one performs substitution and then evaluates:

$(\lambda x.(x + 1))7 \rightarrow (7 + 1) \rightarrow 8$

Note: curried form!

An example

A higher-order example:

$\lambda f. \lambda g. \lambda x. f(g(x))$

Applying it to the successor function $\lambda x.(x + 1)$ twice yields:

$(\lambda f. \lambda g. \lambda x. f(g(x)))((\lambda y.(y + 1))(\lambda z.(z + 1)))$

$\rightarrow (\lambda g. \lambda x.((\lambda y.(y + 1))(g(x)))(\lambda z.(z + 1)))$

$\rightarrow \lambda x.((\lambda y.(y + 1))(\lambda z.(z + 1))x))$

$\rightarrow \lambda x.((\lambda y.(y + 1))(x + 1))$

$\rightarrow \lambda x.((x + 1) + 1)$

Pure lambda calculus

In pure λ-calculus, there are only variables $f, g, h, ..., x, y, z, ...$ and operators for λ-abstraction and application.

λ-terms are created from these:

- any variable x is a λ-term;
- if M and N are λ-terms, then MN is a λ-term (functional application);
- if M is a λ-term and x is a variable, then $\lambda x. M$ is a λ-term (functional abstraction).

Application is not associative, i.e. usually $(MN)P \neq M(NP)$. MNP is interpreted as $(MN)P$.
Some interesting facts

- In pure λ-calculus, λ-terms serve both as functions and as data. (+1 above was informal!)
- The substitution rule above is called β-reduction.
- Renaming variables (e.g. $\lambda x.xz$ to $\lambda y.zy$) is called α-reduction.
- Computations in λ-calculus is performed by β-reducing terms whenever possible and as long as possible.
- Theorem (Church-Rosser): the order of reductions does not matter (as there will always be some common final reduction).
- A term is in normal form if no β-reductions apply (halting state of TM).
- There are terms with no normal form (corresponding to non-halting computations of TMs). E.g. $(\lambda x.xx)(\lambda x.xx)$.

Church numerals

0 $\equiv \lambda f. \lambda x.x$
1 $\equiv \lambda f. \lambda x.fx$
2 $\equiv \lambda f. \lambda x.f.fx$
3 $\equiv \lambda f. \lambda x.f(f.fx)$

... $n \equiv \lambda f. \lambda x.f^nx$

Then successor may be defined as:

$\lambda m. \lambda f. \lambda x.f(mx)$

Recursive functions

Functions $N^k \to N$, intuitively representing all the computable functions (Gödel):

- **Successor:** the function $s : N \to N$ given by $s(x) = x + 1$ is computable;
- **Zero:** the function $z : N^0 \to N$ given by $z() = 0$ is computable;
- **Projections:** The functions $\pi^n_k : N^n \to N$ given by $\pi^n_k(x_1, ..., x_n) = x_k$, for $1 \leq k \leq n$ is computable;
- **Composition:** If $f : N^k \to N$ and $g_1, ..., g_k : N^p \to N$ are computable, then so is the function $f \circ (g_1, ..., g_k) : N^p \to N$ that on input $\hat{x} = x_1, ..., x_n$ gives $f(g_1(\hat{x}), ..., g_k(\hat{x}))$.

Primitive recursion: If $h_i : N^{n-1} \to N$ and $g_i : N^{n+k} \to N$ are computable, $1 \leq i \leq k$, then so are functions $f_i : N^n \to N, 1 \leq i \leq k$, defined by mutual induction as follows:

- $f_i(0, \hat{x}) \equiv h_i(\hat{x})$,
- $f_i(x + 1, \hat{x}) \equiv g_i(x, \hat{x}, f_i(x, \hat{x}), ..., f_k(x, \hat{x}))$.

where $\hat{x} = x_2, ..., x_n$.

Unbounded minimization: If $g : N^{n+1} \to N$ is computable, then so is the function $f : N^n \to N$ that on input $\hat{x} = x_1, ..., x_n$ gives the least y such that $g(z, \hat{x})$ is defined for all $z \leq y$ and $g(y, \hat{x}) = 0$ if such a y exists and is undefined otherwise. We denote this by

$f(\hat{x}) = \mu y. (g(y, \hat{x}) = 0)$.

Recursion theorem

- **First recursion theorem:** If $f : N^n \to N$ is computable, then so is the function $g : N^{n+1} \to N$ defined by mutual induction as follows:

 - $g(0, \hat{x}) \equiv f(\hat{x})$,
 - $g(x + 1, \hat{x}) \equiv f(x, \hat{x}, g(x, \hat{x}), ..., g(k, \hat{x}))$.

where $\hat{x} = x_2, ..., x_n$.

- **Second recursion theorem:** If $f : N^n \to N$ is computable, then so is the function $g : N^n \to N$ defined by mutual induction as follows:

 - $g(x_1, ..., x_n, 0) \equiv f(x_1, ..., x_n)$,
 - $g(x_1, ..., x_n, x + 1) \equiv f(x_1, ..., x_n, g(x_1, ..., x_n, x))$.
Recursive functions

- **Primitive recursive functions** obey (1) – (5)
- **μ-recursive functions** obey (1) – (6)
- There exists a non-primitive (total) recursive function (Ackermann’s function)

\[
A(0, y) = y + 1,
\]
\[
A(x + 1, 0) = A(x, 1),
\]
\[
A(x + 1, y + 1) = A(x, A(x + 1, y)).
\]

- Primitive recursive functions are total, μ-recursive may be partial.
- Recursive functions correspond to Turing Machines.

Turing Machine

- a tape
- an alphabet (with a “blank”)
- a head over the tape
- read or write operation
- left or right tape movement
- state (finitely many)
- transition function (may be partial)

\[
\delta : (Q \setminus F) \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}
\]
- **Universal Turing Machines!**