
EDAF95/EDAN40 - Functional Programming
Lecture Notes

L4: Types, Type Classes, and Data Structures.

Simon Kristoffersson Lind
simon.kristoffersson_lind@cs.lth.se

2024

In this lecture we will cover the basics of Haskell’s type system. While doing
so, we will cover type inference, Haskell’s basic types, and how to create our
own types. As fun/interesting example, I will alsow show some type-level
programming.

1 Haskell’s type system and type inference
In short a type system allows us to describe restrictions on variables by giving
them a type. As an example consider the following code snippet:

1 a :: Bool
2 a = False

Here we create a variable a, and we tell the compiler that a is a Bool. In
turn, this restricts us in how we use the variable a. Consider a function like
so:

1 f x = x + 5

Here f uses the + operator to add 5 to its argument. Clearly, this operation
is not defined for Booleans, and therefore we are not allowed to apply f to
our variable a. Hence, we have restricted the ways in which we are allowed
to use a.

So, why do we want types if they only restrict us? Well it turns out that
types are good both for us, and the compiler. First of all, types help us

1

avoid many common errors, because the compiler can tell us “No, you’re
not allowed to do that with this type!”. Second, types allow the compiler
to know more about our variables, which in turn allows it to perform better
optimizations. Faster code = better 🙂.

Type inference is the process of automatically figuring out what types
things are. In other words, we can write a code like this:

1 a = False
2 f x = x + 5

and the compiler will figure out the types:

1 a :: Bool
2 f :: Num a => a -> a

Neat! Though it’s good practice to always write the types yourself.

Haskell implements a Hindley-Milner type system, which is very powerful.
More specifically, it is complete, which essentially means that it can figure out
the type of anything you throw at it. This has some interesting implications,
which we’ll see more of at the end of this lecture 🙂.

2 Basic Types
Haskell includes a number of basic types, that are part of the language itself.
The ones you’ll see most commonly are Bool, Char, String, Integer,
Rational, List, Tuple.

A Bool is just a Boolean, nothing fancy:

1 b :: Bool
2 b = False

The same goes for Char – it’s just a character:

1 c :: Char
2 c = 'b'

Strings however are a bit more interesting. At first they seem just like Java
(or many other languages):

2

1 s :: String
2 s = "hello"

However, if you instead just write:

1 s = "hello"
2 :type s

into the interpreter, you’ll find that it says:

1 s :: [Char]

Huh? Turns out String is just an alias for a list of Char. A little further
down, we’ll learn how to create our own type aliases.

Numbers are where it gets a little more complicated. First of all we have
Haskell’s “default” integer type, just called Integer:

1 i :: Integer
2 i = 51298370129837012730137278371826319823701920381923

Integer is a flexible data type, which effectively means that you can write
really big numbers.
We also have fixed-width types, like Int:

1 i :: Int
2 i = 5

If we were to write a number that’s too big here, the compiler would warn us.

Similarly, we have different types of decimal numbers:

1 f :: Float
2 f = 5.3
3

4 d :: Double
5 d = 5.31203981029381
6

7 r :: Rational
8 r = 5.123781980283881892461782612739123890128364819279380123890

Float and Double are your standard fixed-width floating-point numbers.
Rational is flexible, just like Integer, which means you can get really pre-
cise numbers. In practice, Rational is implemented as a fraction of two

3

Integers.

We have lists and tuples, that allow you to create collections of other types:

1 l :: [Int]
2 l = [1, 2, 3, 4]
3

4 t :: (Integer, String)
5 t = (1, "Hello")

Finally, we have functions:

1 f1 :: Num a => a -> a
2 f1 x = x + 5

I would read this type a -> a is “a maps to a”. You could also say that “f is
a mapping from a to a”. If you’re more used to Java or other non-functional
languages, you might be more inclined to say “f takes an a and returns an a”.

Num a => is what we call a type constraint. You can think of it like an inter-
face in Java. So what we’re saying here is that “the type a has to be a Num”.
In other words, since we’re using the + operator, the argument x has to be a
number for f1 to be well-defined.

Type signatures start to become a bit more complicated when we bring in
more than one parameter for a function:

1 f2 :: Num a => a -> a -> a
2 f2 x y = x + y

Just like before, I would read this as “a maps to a maps to a”. But, if you’re
not used to this type of function signature, this can easily get confusing:
“does it return an a, and then another a?” No. Really the way we should
read this is like so:

1 f2 :: Num a => a -> (a -> a)

In other words, f2 is really a function that takes one a argument, and returns
another function. Fundamentally, all functions in Haskell take only a single
argument. Any function with more than one argument, really just takes one
argument and returns a new function. Therefore, we are allowed to to cool
stuff like this:

4

1 f3 :: Num a => a -> a
2 f3 = f2 5

Now we have created a new function f3 by essentially saving the value 5 in
the x argument for f2. Note that this is a completely separate function, and
f2 still exists in its original form. This concept is called Currying, and f2 is
called a curried function.

3 Creating our own types
By far the easiest way to create a type of you own is a type alias using the
type keyword:

1 type MySuperCoolString = [Char]

This creates a “new” type called MySuperCoolString. In reality, all we’ve
created here is an alias for the type [Char]. MySuperCoolString is just an-
other name for [Char]. The standard Prelude String type is defined exactly
like this.

If we want our type to be new for real, then the most basic way we can
accomplish this is by the newtype keyword:

1 newtype MyEvenCoolerString = CoolString String

CoolString is called a constructor, and we have used String as a field. When
we want to create a variable of this type we have to use this constructor:

1 s = CoolString "Hello"

Functionally speaking, this variable s is a String. However, the compiler
won’t let you use it in functions that take a String, because the compiler
considers it a different type, even though they are functionally identical.

There are however some caveats. You cannot expect to use s just like you
would use a String. If you’re used to non-functional programming, you can
thing of MyEvenCoolerString as a class that contains a String. As such,
in order to use s as a string, you have to unwrap it first:

1 f :: MyEvenCoolerString -> MyEvenCoolerString
2 f (CoolString s) = CoolString (reverse s)

5

Finally, it is also possible to create a new type that contains anything:

1 newtype MyVeryOwnType a = MyType a

Now a can be any type, which allows me to create variables that contain
anything. For example I can do:

1 x = MyType "Hello"
2 y = MyType 42

Now x has the type MyVeryOwnType [Char] and y has type MyVeryOwnType
Integer. In other words, this works much like template types in Java or
C++.

Next we’ll look at the data keyword, which is a more powerful version of
newtype. Now you may ask:
“Then, why should we use newtype, if data is more powerful?”
While data is more powerful, newtype is easier for the compiler to work with.
In other words, it can do a better job compiling things for you. Therefore,
it is good to use newtype when you can.

So, what’s the difference? newtype can be used with exactly one constructor
with exactly one field. Whereas data can have many constructor, each
with many (or zero) fields.

As a first example, consider a simple data type to represent seasons:

1 data Season = Spring | Summer | Autumn | Winter

Here we have four different constructors, and neither of them have a field.
We would create variables like so:

1 x = Summer

Next, maybe we want to store the average temperature along with the season:

1 data SeasonTemp t = SpringT t | SummerT t | AutumnT t | WinterT t

Again, t is like a template, so we can put anything in this field. We create
variables like so:

6

1 x = AutumnTemp 15

We’re also allowed to have different fields for different constructors. Using
this we can create a very simple Optional type inspired by Java:

1 data Optional a = None | Some a

In fact this is almost exactly how the Maybe type is defined in the standard
Prelude.

Now, to illustrate multiple fields, we might want to create a type to represent
a mapping from one thing to another:

1 data Mapping k v = Map k v

When we want to access the fields, we can destructure the type just like I
shoed before with newtype:

1 key :: (Mapping k v) -> k
2 key (Map a b) = a
3

4 val :: (Mapping k v) -> v
5 val (Map a b) = b

Additionally, we can use so-called record syntax to give names to our fields:

1 data FancyMapping k v = FancyMap { fancy_key :: k, fancy_val :: v }

This will give us the functions fancy_key and fancy_val for free. And they
work exactly like the key and val functions we defined ourselves earlier.

It is also possible to use record syntax with newtype, as long as you stick to
the rule of having only one field.

7

4 Example: binary search tree
Let’s look at a practical example: creating a binary search tree.

First and foremost, let’s define our data type:

1 data Tree a = EmptyTree | Node (Tree a) a (Tree a)

Simple, right?
Basically, we’re saying that a Tree is either Empty, or it contains an element
of type a along with a left and right subtree.

But, hang on.
This is a recursive type definition, is that really allowed?
Yes, yes it is 🙂.

Next, I suppose we want to implement an insert function, so we can add
things to our tree:

1 insert :: Ord a => (Tree a) -> a -> (Tree a)
2 insert EmptyTree x = Node EmptyTree x EmptyTree
3 insert (Node left val right) x
4 | x < val = Node (insert left x) val right
5 | x > val = Node left val (insert right x)
6 | otherwise = Node left val right

Okay, let’s break this down.

First, we simply state the type of this insert function, where we say that the
type a has to be Ord. This is the requirement for us to use the comparison
operators < and >. And we’re also saying that f takes a Tree, then an a, and
returns a Tree. Basically, the first argument is our tree, the second argument
is the thing we want to add, and the return value is a new tree.
Second, we define our base case, when we’re adding something to an empty
tree. In this case, all we do is return a Node with the element inserted, and
with both the left and right subtrees empty.

On the third line, we define our general case, when the tree is not empty.
Here we deconstruct the tree argument, so that we can access its individual
fields.

Finally, we create the three cases for insertion. If the new item x is smaller
than our current value val, then we insert into the left subtree. If x is greater

8

than our val we insert into our right subtree. The only remaining choice,
denoted by otherwise, is that x is exactly equal to our val, in which case
we simply return our tree as it was.

A contains function can be implemented with similar ease:

1 contains :: Ord a => (Tree a) -> a -> Bool
2 contains EmptyTree x = False
3 contains (Node left val right) x
4 | x < val = contains left x
5 | x > val = contains right x
6 | otherwise = True

Now we’re ready to use our tree:

1 x0 = EmptyTree
2 x1 = insert x0 5
3 x2 = insert x1 3
4 x3 = insert x2 8
5 x4 = insert x3 10
6 x5 = insert x4 5 -- This will do nothing, since 5 is already in the tree
7 x = insert x5 1
8

9 contains x 5 -- True
10 contains x 16 -- False
11 contains x 1 -- True

You may wonder why I define first x0 and then x1 and so on. Coming from
non-functional languages, it is tempting to write:

1 x = insert x 5

However, Haskell is a mathematical language, which means that this is a re-
cursive definition. Thanks to Haskell’s lazy evaluation, it will happily allow
you to write such expressions, but the moment you try to evaluate x, it will
result in an infinite recursion.

Now we get to the final piece of the puzzle, when it comes to creating our
own types: typeclasses. Interestingly, Haskell has chosen the keyword class
for this, which can make it confusing when you’re used to object-oriented
languages. Really you should think of class in Haskell like an interface in
Java, or an abstract class in C++. The word class in Haskell refers to the
creation of a class of types, hence we call it a typeclass.

9

1 class Set t where
2 class_insert :: Ord a => t a -> a -> t a
3 class_contains :: Ord a => t a -> a -> Bool

Here we define our typeclass called Set. For any class to be considered a
set, it should implement an insert function, and a contains function, which
is exactly what we describe here. Though I’ve called them class_insert
and class_contains to highlight the fact that they’re different from our
previous insert and contains functions.

Our Tree data type obviously fulfills our requirements for being a Set, so we
can tell the compiler that our tree is a set:

1 instance Set Tree where
2 class_insert = insert
3 class_contains = contains

Since we’ve already defined our own insert and contains functions, we can
simply reuse them here, It would also be allowed to define them directly in
the instance definition.

This concludes the part of this lecture that is necessary for passing
the course. What follows on the next few pages is just some fun
extra content, for those who are interested 🙂.

10

5 Haskell’s type system is Turing complete
As I mentioned before, Haskell’s type system is complete. A result of this,
is that it is also Turing complete, which means that we can program things
directly in the types.

Fun! 🙂

However, by default GHC has a few safety-rules to ensure that it is able to
compile the programs you write. So, in order to use the full capabilities of
Haskell’s type system, we need to turn some of those safety-rules off:

1 {-# OPTIONS_GHC -fno-warn-missing-methods #-}
2 {-# OPTIONS_GHC -fno-warn-simplifiable-class-constraints #-}
3 {-# LANGUAGE MultiParamTypeClasses #-}
4 {-# LANGUAGE FunctionalDependencies #-}
5 {-# LANGUAGE FlexibleInstances #-}
6 {-# LANGUAGE UndecidableInstances #-}

With that out of the way, let’s do some type-level programming!

We “magically” create booleans:

1 data True
2 data False

These are just types, and we’ll pretend that they have some meaning 🙂.

We can use these to define operations on Booleans:

1 class Not b r | b -> r
2 instance Not False True
3 instance Not True False

Here we’re using some fancy syntax b -> r. While that may look like a
function type, what it actually means here is that the type r (for “result”) is
uniquelly defined from the type b. In other words, we’re telling the compiler
“I’m not going to give you the type of r, but I’m going to give you all you
need to figure it out”.

By then defining exactly two instances, corresponding to b = True and b =
False, we constrain the type of r.

11

Using the exact same principles, we can bring in two types to construct more
complicated operations:

1 class Or b1 b2 r | b1 b2 -> r
2 instance Or True True True
3 instance Or True False True
4 instance Or False True True
5 instance Or False False False

Now, how do we use these to perform actual computations?

We’re going to use a little trick to make the compiler extract the result type
for us. First, we define a simple typeclass:

1 class Result r where
2 result :: r

By creating an instance of this typeclass, we allow the compiler to infer the
type of r for us. Then we’ll be able to check the result by :type result.

So now all we have to do is define the instance, which makes the actual type
computation happen:

1 instance (Or True False r) => Result r

Here we’re saying “if the types True False r is a Or, then create instance
Result r”. Obviously, we haven’t specified r, so the compiler will figure out
that “okay, the only valid instance is OR True False True, so r must be
True”. From there it creates our instance Result True.

With that done, we can check our result:

1 :type result -- True

Now I should note that since we created a typeclass called Result, we’re not
allowed to create another one with the same name. In other words, if we
want to perform more computations, we’ll have to name them differently, for
example:

1 class Result1 r where
2 result1 :: r
3

4 class Result2 r where
5 result2 :: r

12

Using the same tricks we can create numbers:

1 data Zero
2 data S n

Here we’ve defined a type called Zero to represent the number zero. Then
we define another type S n, where n is another number type. Technically n
can be annything, but we decide it shall be another number type.

These are called Peano numbers, and S n refers to the successor of n. In
this system, the number one is represented by S Zero, the number two is
represented by S (S Zero), and so on...

We can use our Booleans to define equality operations. As an example, here
I’ve implemented the LessThan operator (<):

1 class LessThan a b r | a b -> r
2 instance LessThan Zero Zero False
3 instance LessThan (S x) Zero False
4 instance LessThan Zero (S x) True
5 instance (LessThan a b r) => LessThan (S a) (S b) r

That last line should be read as “if a, b, and r is an instance, then (S a)
(S b) r is also an instance”. In other words, this creates a sort of infinite
expansion of instances, which allows the compiler to figure out the r type for
any two numbers.

And of course we can perform computations. Here I’m checking if 4 < 5:

1 class Result r where
2 result :: r
3

4 instance (LessThan (S (S (S (S Zero)))) (S (S (S (S (S Zero))))) r)
5 => Result r
6

7 :type result -- True

13

The fun doesn’t end there. We can create lists:

1 data Nil
2 data Cons x xs

Here we create a type Nil to represent an empty list, and a type Cons x xs.
Just like the plain Haskell syntax for list, we use x to signify the head of the
list, and xs to signify the rest of the list.

In other words, we can create a list of the types Int, Float, and Double like
so:

1 Cons Int (Cons Float (Cons Double Nil))

And we can create an operation to get the head of the list:

1 class Head list x | list -> x
2 instance Head Nil Nil
3 instance Head (Cons x xs) x
4

5 class Result r where
6 result :: r
7

8 instance (Head (Cons Int (Cons Float (Cons Double Nil))) r) => Result r
9

10 :type result -- Int

And we can create a Range operator that gives us a list of integers like
[3, 2, 1, 0]

1 class Range n xs | n -> xs
2 instance Range Z Nil
3 instance (Range n xs) => Range (S n) (Cons n xs)
4

5 class Result r where
6 result :: r
7

8 instance (Range (S (S (S (S Z)))))))) r) => Result r
9

10 :type result
11 -- Cons (S (S (S Z))) (Cons (S (S Z)) Cons (S Z) (Cons Z Nil))

The possibilities are endless 🙂.

14

