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In this lecture we're going to explore Haskell’s most common dataclasses:
Functor, Applicative and Monad. Recall from the previous lecture on types,
a dataclass is basically just an interface in Java (or an abstract class in C++).
Despite this, it’s very common for people to struggle with grasping Monads.
Functors and Applicatives are usually easy enough, but a lot of people strug-
gle with Monads.

Why, then, are Monads particularly difficult?

They’re not, really. Personally I think the main problem with Monads is the
way people talk about them. But more on that later.

With this lecture, I hope to convince you that Monads really aren’t that
complicated. Monad. Is. Just. An. Interface.

Anyway, let’s get into it.

1 Functor

We’ll begin with the Functor dataclass, the simplest of the three. All it does
is define the fmap function:

1 class Functor f where
2 fmap :: (a =>Db) >f a->fb



If you haven’t gotten used to reading Haskell’s type signatures yet, this might
look quite confusing. Let’s look at the Maybe type to get a better idea of
what this means:

1 instance Functor Maybe where

2 —-—fmap :: (a -> b) -> Maybe a -> Maybe b
3 fmap _ Nothing = Nothing
4 fmap £ (Just x) = Just (f x)

Here we've declared that Maybe is a Functor. Or, in Java terminology:
Maybe implements the Functor interface. This example also makes it much
more clear how to interpret the type of fmap.

In my opinion, list is the type that perfectly captures the Functor typeclass:

1 instance Functor [] where
2 —-—fmap :: (a -> b) -> [a] -> [b]
3 fmap = map

Yes, fmap is just the map function for lists.

So, why should we care about the Functor typeclass, when we already have
lists and the map function?

It’s the exact same reason you use interfaces in Java: This allows you to define
more generic functions that work on any type that implements Functor. To
illustrate:

increment_list_elements :: Num a => [a] -> [a]
increment_list_elements xs = map (+1) xs

increment_elements :: (Functor f, Num a) => f a -> f a
increment_elements xs = fmap (+1) xs

2 Applicative

The Applicative typeclass is a generalization of Functor. As such, applica-
tives are a subset of functors:

Applicatives C Functors



In other words, all applicatives are also functors.
So what are applicatives?
Applicative generalizes Functor to use functions of several arguments.

Recall, the fmap function allows us to take a “regular” function of one ar-
gument, and map it over a datatype (e.g. the contents of a list). However,
sometimes we might want to map “regular” function that take more than
one argument. In this case we could define several versions of fmap:

1 instance NaiveApplicative f where

2 fmap2 :: (@ ->b ->c¢c) >fa->fb->fc

3 fmap3 :: (a >b ->c ->d) >fa->fb->fc->fd

4 fmapd :: (a >b ->c->d ->e) >fa->fb->fc->fd->fe
5

Obviously, this becomes tedious very quickly, and it only allows us to get a
fixed number of arguments. Can we define a general fmap that allows func-
tions with any number of arguments?

Of course the answer is yes, and this is where the Applicative typeclass
makes use of some clever tricks.

Recall that all functions in Haskell are Curried, which means that all func-
tions take only one argument. And functions that take several arguments
really only take one argument, and return a new function. As such, this:

1a->b->c->d
is really the same as:
1a-> (0 ->(c—>d)

This is the trick to generalize fmap to any number of arguments. Essentially,
we're going to create a function with this type of signature:

1 cool_fmap :: £ (a ->b) ->f a->fb

As you can see, this looks very similar to fmap. The magic here is that b is
allowed to be another function! Let’s say, as an example, that we have b =
(c => d), then:



1 cool_fmap :: f (a => (¢ => d)) -> f a -> f (c > d)

In other words, this takes a function of two arguments, and returns a func-
tion of one argument.

The only remaining piece of this puzzle is how we get the first function to
become wrapped in the type f. If we're working with lists, then we would
have to do something like this:

1 cool_fmap (cool_fmap [my_function] my_listl) my_list2

But what about other types?
Applicative defines a function called pure, which fulfills this purpose.

Now let’s finally look at the real definition of the Applicative typeclass:

1 class Functor f => Applicative f where
2 pure :: a —> f a
3 (<x>) :: £ (a->b) >fa->fhb

Let’s look at the list implementation as an example:

1 instance Applicative [] where
2 pure x = [x]
3 fs <> xs = [f x | f <- fs, x <- xs]

As you can see, the pure function just puts whatever it’s given into a list.
Then, we have the infiz operator <*> that acts just like our cool_fmap. This
combination of operators gives us a pretty neat syntax for applying functions:

listl = [1, 2, 3, 4, 5]
list2 6, 7, 8, 9, 10]

pure (+) <*> listl <*> list2
-- [7,8,9,10,11,8,9,10,11,12,9,10,11,12,13,10,11,12,13,14,11,12,13,14,15]
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This resulting value might look a bit surprising when you first see it. Es-
sentially, it has applied the (+) function for each possible combination of
arguments from the lists (i.e. [146, 1+7, 148, 149, 1410, 246, ..]). This
comes from the fact that the list implementation of <*> uses list compre-
hension to iterate over both the list of functions and the list of arguments.
Effectively, using set notation, we’re applying (+) to the set of arguments
List; x Lists.



Applicative actually also defines an additional operator <$>, but we don’t
have to implement that one ourselves. It allows us to write the same thing
like this instead:

1 (+) <$> listl <*> list2
2 —— [7,8,9,10,11,8,9,10,11,12,9,10,11,12,13,10,11,12,13,14,11,12,13,14,15]

Which one you use is just a matter of preference. Personally, I prefer to use
pure to signal that the function is being lifted into the Applicative type.

3 Monad

Finally we’re here, Monads.

Just like Applicatives are a subset of Functors, Monads are a subset of Ap-
plicatives:
Monads C Applicatives C Functors

In other words, all Monads are also Applicatives.

Unlike Applicative, Monad isn’t a direct generalization of the same pattern.
I would rather call Monad an extension of Applicative. Specifically, Monad
allows us to chain several functions in a neat way. Allow me create a simple
example to illustrate.

Say you are working as a tax official, and you have a list that you use to
map a person’s name to their national ID-number (think Swedish personal
number or US social security number):

1 people = [("Alice", 1), ("Bob", 2)]

You also have a list that you use to map a persons ID-number to the amount
of tax they owe:

1 tax_owed = [(1, 1200), (3, -5400)]

It’s tedious to manually look up a person’s name, and then their owed tax,
so you want to create a function that automates this process.

You immediately decide that the lookup function is a good candidate:



1 lookup :: Eq a => a -> [(a, b)] -> Maybe b

Recall that it takes a key and and a list of key-value pairs. If the key exists
in the list of key-value pairs, then the corresponding value is returned. Oth-
erwise it returns Nothing.

Since lookup returns a Maybe, you create a helper function to take the value
out of the Maybe:

1 unwrap :: Maybe a -> a
2 unwrap (Just x) = x

Of course, this function will crash if it gets a Nothing, so we have to check
the argument first.

With this, you implement your function:

1 find_tax :: String -> Maybe Integer

2 find_tax p

| identifier /= Nothing = lookup (unwrap identifier) tax_owed
| otherwise = Nothing

where

identifier = lookup p people
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Now, does this work? Yes.

But is it tedious? Also yes, because we have to manually check and unwrap
the Maybe. Imagine if we had 3 calls to lookup, or even more. Then this
type of function would quickly become unreasonably large.

So, what do we do instead?

Let’s think about it for a second. The issue is that we have to check if it’s
Nothing, and then unwrap it. And if we had more Lookups, we would have
to check and unwrap before every new lookup. As it turns out, we can easily
capture this pattern in a helper function:

1 bind :: Maybe a -> (a -> Maybe b) -> Maybe b
2 bind Nothing _ = Nothing
3 bind (Just x) f = f x

And this allows us to rewrite our find_tax function much more cleanly:



1 find_tax :: String -> Maybe Integer
2 find_tax p = bind (lookup p people) (\i -> lookup i tax_owed)

That’s it, you've just discovered the Monad!
Lecture, done!

Just kidding, we still have a few more things to cover. But Monad is really
that simple. Recall how Functor is just the map function. Monad is just the
bind function.

However, just like with Applicative, Haskell gives us some nicer syntax for
it. Here’s what that looks like:

1 class Monad m where
2 return :: a -> m a
3 (>>=) ::ma->(@a->mb) ->mb

Here we have the infiz operator >>= which works exactly like our bind func-
tion.

We also have a function called return, which is really just another name for
the pure function. You'll see why we have that soon. For now we focus on
the bind operator.

Here’s the Monad implementation for Maybe:

1 instance Monad Maybe where
2 return x = Just x
3 x >>= f = bind x £

Of course, the official Haskell definition doesn’t use our bind function. I just
used it to highlight that they work exactly the same.

Now this allows us to rewrite find_tax even nicer:

1 find_tax :: String -> Maybe Integer
2 find_tax p = lookup p people >>= (\i -> lookup i tax_owed)

But wait, it doesn’t end there! Haskell also gives us the so-called do-notation,
which allows us to mimic imperative programming. And this is where the
return function comes in:



1 find_tax :: String -> Maybe Integer
2 find_tax p = do

3 i <- lookup p people
4 owed <- lookup i tax_owed
5 return owed

Really this is just syntactic sugar. In fact the compiler translates this to:

1 find_tax :: String -> Maybe Integer
2 find_tax p = lookup p people >>= (\i -> lookup i tax_owed >>= (\owed ->
< return owed))

Thats it!

For real this time.
That’s all it is.

In my opinion, Maybe is the quintessential Monad, because it perfectly cap-
tures this pattern of operation (the bind operator).

“But wait”, you may be thinking, “that wasn’t so bad”.

Indeed, the Monad typeclass really isn’t that complicated when you break it
down.

However, next we’ll look at an application of the Monad typeclass. In Java
language, we’ll look at a specific implementation of the Monad interface. And
this is where things get confusing. I also think this is where people get
confused about Monads, because the concept of a Monad gets mixed up with
this specific application of Monad.

3.1 Stateful Computations using Monads

When you go anywhere to read about Monads, you often hear something
like:

“they allow us to perform stateful computations”

I think this is what creates the most confusion when learning Monads, be-
cause it sounds like there is something special about Monads, in that they
magically enable us to do something that we couldn’t do without them. This
is entirely false. Just like I said above, Monad is really just the bind function



1
2
3

4
5
6
7
8
9

Ut e W N =

(>>=).
So, what are people referring to when making statements like that?

Well, the bind function (>>=), and especially do-notation allows us to do
stateful computations in a nicer way.

Let me show you with another example. Bear with me, this one will be a bit
more involved, because I want to show you all the details. When we’re done
here, there will (hopefully) be no more magic left in the Monad.

In this example, we're going to write a function that takes an Integer, let’s
call it z, and returns the prime factorization of x as a list of primes. To
illustrate, we want to create a function like this:

prime_factors :: Integer -> [Integer]
prime_factors x = —- TODO...

x = 360 -- This is 2%2%2%x3*3%5
prime_factors x
= 2y 2y 2, 8, 8, &l

The general algorithm we're going to implement looks like this (Java-ish
pseudo code):

list_of_primes = []
while (x > 1) {
p = get_next_prime_number ()

while ((x mod p) == 0) {
x=x/p
list_of_primes.add(p)
}
}
return list_of_primes

I'm sure most of you already see approximately how this will look in Haskell.
So let’s start writing:

prime_factors :: Integer -> [Integer]

prime_factors 1 = []

prime_factors x = (replicate n p) ++ prime_factors x'
where
p = next_prime
(n, x') = extract_prime_factor p x
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Here I've used the replicate function to add n copies of p to the result-
ing list. Of course this isn’t correct (yet). There are some crucial parts
missing. First and foremost, I plugged in two functions that don’t exist yet
(next_prime and extract_prime_factor).

Let’s start with extract_prime_factor. It should take our x and our cur-
rent prime p, and it should return the number of time we can divide x by p,
along with the new x-value after dividing by p.

Here we need to keep track of how many times we’ve divided by p, so I'll
create a local function using a where-clause. This allows me to thread a
counter variable through the recursive function calls:

-— We return (Int, Integer) because the repeat function takes an Int,
-- and not Integer, so n needs to be an Int.
extract_prime_factor :: Integer -> Integer -> (Int, Integer)
extract_prime_factor p x = extract_pfactor p 0 x
where
extract_pfactor p n x
| mod x p == 0 = extract_pfactor p (n+1) (div x p)
| otherwise = (n, x)

Easy enough. We can argue that this is already a stateful computation, since
we have to keep track of the counter. However, the state is only internal,
and thus we can hide it inside our where-clause.

The next_prime function is where the state becomes more explicit. In order
to compute the next prime, we need all the previous primes. Obviously, we
don’t want to recompute all primes every time we call next_prime, so we’ll
need to explicitly handle a list of all our primes. Let’s start by modifying
prime_factors:

prime_factors :: Integer -> [Integer]
prime_factors x = pfactors [] x
where
pfactors _ 1 = []
pfactors primes x = (replicate n p) ++ pfactors primes' x'
where
(p, primes') = next_prime primes
(n, x') = extract_prime_factor p x

Here I've modified the function to take a list of all the previous primes we’ve
computed. Once again, I've used a where-clause to hide this internal state
inside a local function. Now the next_prime function looks more reasonable

10



as well, since it no longer magically produces the next prime from nothing.

Let’s implement next_prime. First we’ll need a helper function to simply
check if a number is prime:

1 is_prime :: [Integer] -> Integer -> Bool
2 is_prime [] _ = True

3 is_prime (p:ps) x

4 | mod x p == 0 = False

5 | pxp > x = True

6 | otherwise = is_prime ps x

We simply run through the list of primes that we already have computed, to
see if x is divisible by any of them. If it is not, then x is prime.

Before we continue, just a quick word on the line:
1 | p*p > x = True

This is just an optimization. We don’t need to check all previous primes,
only up to \/x. As such, this tiny optimization makes our search for new
primes a lot faster.

On to the actual implementation of next_prime:

1 next_prime :: [Integer] -> (Integer, [Integer])

2 next_prime [] = (2, [2])

3 next_prime [2] = (3, [2,3])

4 next_prime prev_primes = (p, prev_primes ++ [p])

5 where

6 p = until (is_prime prev_primes) (+2) (last prev_primes + 2)

Here we implement two base cases to get the search started. Then in the
general case, we simply check every odd number by using until to loop until
we find a new prime.

Okay, done!

Let’s quickly summarize our final implementation:

11
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is_prime :: [Integer] -> Integer -> Bool
is_prime [] _ = True
is_prime (p:ps) x

| mod x p == 0 = False

| pxp > x = True
| otherwise = is_prime ps x

next_prime :: [Integer] -> (Integer, [Integer])
next_prime [] = (2, [2])
next_prime [2] = (3, [2,3])
next_prime prev_primes = (p, prev_primes ++ [p])
where
p = until (is_prime prev_primes) (+2) (last prev_primes + 2)

extract_prime_factor :: Integer -> Integer -> (Int, Integer)
extract_prime_factor p x = extract_pfactor p 0 x
where
extract_pfactor p n x
| mod x p == 0 = extract_pfactor p (n+1) (div x p)

| otherwise = (n, x)

prime_factors :: Integer -> [Integer]
prime_factors x = pfactors [] x
where

pfactors _ 1 = []

pfactors primes x = (replicate n p) ++ pfactors primes' next_x

where
(p, primes') = next_prime primes
(n, next_x) = extract_prime_factor p x

The part that is really considered stateful here is the next_prime function,
since it requires all the previous primes. As such, next_prime is the part
that we're going to change by using a Monad instead.

I want to be really really clear here: the Monad typeclass doesn’t magically
allow us to do something new, that we couldn’t do without it! Clearly we’ve
already implemented a stateful function (next_prime), and it worked just
fine. However, we’ll see that using a Monad allows us to make stateful func-
tions nicer to work with, by hiding the state. After all, we don’t really care
about the list of primes, so let’s hide it inside a Monad ©.

Introducing: the State Monad!
1 newtype Stateful a b = ST (a -> (b, a))

Here a is our state type, and b is the type of the thing we actually care about.
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In our case for next_prime, our state is our list of primes so the type a is
[Integer], and the thing we care about is our prime so the type b is Integer.

Now we’re going to create our instance of the Monad typeclass. Or implement
the Monad interface in Java terms. Recall that Monads C Applicatives C
Functors, and therefore we also have to implement Functor and Applicative:

1 instance Functor (Stateful a) where

2 -— fmap :: (b -> c) -> Stateful a b -> Stateful a c

3 fmap f (ST gen) = ST (\state -> let (x, state') = gen state

4 in (f x, state'))

5

6 instance Applicative (Stateful a) where

7 -— pure :: b -> Stateful a b

8 pure x = ST (\state -> (x, state))

9

10 -— (<*>) :: Stateful a (b -> c) -> Stateful a b -> Stateful a c
11 (ST £) <*> (ST gen) = ST (\state -> let (x, state') = f state
12 (y, state'') = gen state'
13 in (x y, state''))

14
15 instance Monad (Stateful a) where

16 -— (>>=) :: Stateful a b -> (b -> Stateful a c) -> Stateful a c
17 (ST gen) >>= f = ST (\state -> let (x, state') = gen state

18 (ST gen2) = £ x

19 in gen2 state')

You'll notice that I didn’t explicitly implement return. That is because we
get the default implementation:

1 return = pure

entirely for free! ©.

I know this is a lot to take in at once. Please do take the time to read the
types for each of these functions, as the types really help with understanding
what these functions do. Speficially, pay attention to the fact that all these
functions always act on the same state type a. In other words, all of these
manipulate only the thing-we-care-about.

Don’t worry, I'll help you break down the bind function (>>=) to better un-

derstand it. (Since we won’t really use fmap or <*> in our example, I’ll leave
those as an exercise ©@). But first I need an example to work with, so let’s
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implement our new-and-improved next_prime!

We'll begin by declaring a new type PrimeGenerator, to capture our state:

type PrimeGenerator b = Stateful [Integer] b

We use the type keyword here, so PrimeGenerator b is really just an alias
for Stateful [Integer] b. In other words, we're really just specifying that
our state-type is [Integer] (our list of primes).

Now we can use this to write our new version of next_prime:

next_prime :: PrimeGenerator Integer
next_prime = ST np
where

np [1 = (2, [2])

np [2] = (3, [2, 3])

np ps = let p = until (is_prime ps) (+2) (last ps + 2)
in (p, ps ++ [pl)

Okay, let’s break it down.

First of all, I'm sure you can see that we have all the same components in
this version, it’s just structured a bit differently. Really the only difference
is that we no longer return the next prime directly! Instead, we return a
function that generates the next prime. And this is the “magic” that allows
us to hide the state.

In order to really show you what’s going on, I'll write a little helper function:
run :: PrimeGenerator a -> [Integer] -> (a, [Integer])
run (ST gen) state = gen state

Recall that our new version of next_prime returns ST np, where np is the
function that actually generates the next prime. Now we can use this run
function to actually generate primes:

14
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run next_prime []

-- (2, [2])

run next_prime [2]
-—- @3, [2, 3D

run next_prime [2, 3]
— (5, [2, 3, 51)

== @EEGs o o

of course, we're not just going to do run next_prime in our prime_factors
function. That would be pointless, since we’d still have to keep track of the
list of primes.

Instead, we're going to let the bind operator (>>=) keep track of our state
for us ©.

To illustrate how powerful this function-return style is, ill show some exam-
ples. First, with fmap from Functor, we can do this:

run (fmap (+1) next_prime) []

= (@, =)

run (fmap (+1) next_prime) [2]
-- (4, [2, 3]D)

run (fmap (+1) next_prime) [2, 3]
-- (6, [2, 3, 5])

And the <*> operator from Applicative allows us to do this:

run (pure (+) <*> next_prime <*> next_prime) []
-- (5, [2, 3D

run (pure (+) <*> next_prime <*> next_prime) [2]
-- (8, [2, 3, 5])

run (pure (+) <*> next_prime <*> next_prime) [2, 3]
-- (12, [2, 3, 5, 7D

Here we start to see the power. We've made it generate two primes, but we

only had to give it a list of previous primes once.
Admit it, that’s pretty cool ©.
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Finally, the monad allows us to take it one step further:

example = do
a <- next_prime
b <- next_prime
¢ <- next_prime
return (a + b + ¢)

run example []
-- (10, [2, 3, 5])

© W N O e W N

run example [2]
-- (15, [2, 3, 5, 7])

= e
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run example [2, 3]
-- (23, [2, 3, 5, 7, 11]1)
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Now we can make it generate any number of primes we want, and we can do
whatever we want with the primes, and we still only have to give it a list of
primes once.

Absolutely beautiful, isn’t it? @

Let’s break it down to see what’s going on.

In order to break it down, I'll take a step back to a slightly simpler version:

1 example = do

2 a <- next_prime
3 b <- next_prime
4 return (a + b)

Recall that this is compiled to:

1 example = next_prime >>= (\a ->
2 next_prime >>= (\b ->
3 ST (\state -> ((a + b), state))))

And if we unpack the bind operator in the Monad implementation (i.e. make
it more readable) we have:

1 (ST gen) >>= f = ST bind
2 where

3 bind ps = gen2 ps'

4 where

5 (x, ps') = gen ps
6 (ST gen2) = f x

16



In our example function, our furst argument to >>= is next_prime. The bind
function unwraps our np function from inside next_prime, and applies it to
the state ps (initially []). This causes us to generate one prime, and return
it along with the new state ps' ([2]). It then takes that prime and passes it
into the function f, which in our case is:

1 (\a -> next_prime >>= (\b -> ST (\state -> ((a + b), state))))

As such, a becomes the first generated prime number. In the next bind oper-
ator (>>=), we have another next_prime, and so it repeats the same process
for that one. As such, we get a second generated prime in b before the final
function gives us (a + b).

When it comes to the state (our list of primes), bind first gives the state ps
to next_state. From there it gets the updated state ps', which it simply

passes along to the function on the right. And again, it repeats.

As you can see, this construction automatically chains the list of primes for
us, while only giving us the individual prime numbers we care about.

So, let’s finally look at the improved implementation of prime_factors:

1 prime_factors :: Integer -> [Integer]

2 prime_factors x = fst (run (pfactors x) []1)

3 where

4 pfactors 1 = return []

5 pfactors x = do

6 p <- next_prime

7 let (n, x') = extract_prime_factor p x
8 rest <- pfactors x'

9 return ((replicate n p) ++ rest)

Much more readable if I say so myself ©.
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