
EDAF95/EDAN40 Assignment 2

EDAF95/EDAN40: Functional Programming
Assignment F2 (EDAF95): Sudoku solver

Assignment N2 (EDAN40): String alignment

Jacek Malec
Dept. of Computer Science, Lund University, Sweden

May 3rd, 2023

Jacek Malec, http://rss.cs.lth.se 1(24)

EDAF95/EDAN40 Assignment 2

Sudoku (F2)

1

5 2

4

5 9

7

4 1 6

62 3

5 7

1 4

6

8

3

Jacek Malec, http://rss.cs.lth.se 2(24)

EDAF95/EDAN40 Assignment 2

Assignment F2: Sudoku solver

1 Read a file with a set of Sudokus;
2 Solve the current Sudoku and show the result;
3 Present the current unsolved or partially solved Sudoku to the

user;
4 Support the user in solving a Sudoku;
5 Wrap it in a nice read-eval-print loop (or REPL).

The style will be important this time!
If you follow the lab4 instructions, you will get a nice monadic
solution of the problem.
I/O will take a while to master, so begin early!

Jacek Malec, http://rss.cs.lth.se 3(24)

EDAF95/EDAN40 Assignment 2

Topic of today: memoization

Appropriate reference: section 20.6 in Thompson’s textbook “The
craft of functional programming”, 3rd ed.

Reminder:

laziness = call-by-name + sharing

Jacek Malec, http://rss.cs.lth.se 4(24)

EDAF95/EDAN40 Assignment 2

The string alignment problem

An alignment of two strings is a way of finding a correspondence
between them (e.g. by placing one above the other to illustrate how
parts of the strings are related).
Nowadays the most interesting strings consist of only four letters:
A, C, G, T:
https://www.snapgene.com/resources/coronavirus-resources/
?resource=SARS-CoV-2_(COVID-19)_Genome

Jacek Malec, http://rss.cs.lth.se 5(24)

https://www.snapgene.com/resources/coronavirus-resources/?resource=SARS-CoV-2_(COVID-19)_Genome
https://www.snapgene.com/resources/coronavirus-resources/?resource=SARS-CoV-2_(COVID-19)_Genome

EDAF95/EDAN40 Assignment 2

SARS-CoV-2 genome

Jacek Malec, http://rss.cs.lth.se 6(24)

EDAF95/EDAN40 Assignment 2

SARS-CoV-2 genome

Jacek Malec, http://rss.cs.lth.se 7(24)

EDAF95/EDAN40 Assignment 2

The string alignment problem

Given two strings, s and t , an alignment is obtained by inserting
spaces into s and t so that the characters of the resulting strings
may be put in one-to-one correspondence to each other:

HASKELL
PASCA-L

Spaces may also be added at the beginning and at the end of
strings, but a space in one string is not allowed to be aligned with a
space in the other string.

H-ASKELL
-PASCA-L

Jacek Malec, http://rss.cs.lth.se 8(24)

EDAF95/EDAN40 Assignment 2

Optimality of an alignment

The length of an alignment is the number of columns it contains, so

HASKELL
PASCA-L

has length 7, while

H-ASKELL
-PASCA-L

and

H-ASKELL
-PASCAL-

have length 8.
Jacek Malec, http://rss.cs.lth.se 9(24)

EDAF95/EDAN40 Assignment 2

Optimality, cont.

Which of the above alignments is better? No definite answer, it
depends.

The application decides how mismatches and spaces are
penalized and how matches are rewarded.

Below we use three parameters expressing this: scoreMatch,
scoreMismatch and scoreSpace.

Jacek Malec, http://rss.cs.lth.se 10(24)

EDAF95/EDAN40 Assignment 2

Difficulty

The combinatorial explosion.

The algorithm: Take two strings, generate all possible alignments,
evaluate them and return the ones with maximal score.

For strings of length 1000 each the number of possible alignments
is more than 10764.

10100 - googol; 1080 - # of atoms in the universe

Jacek Malec, http://rss.cs.lth.se 11(24)

EDAF95/EDAN40 Assignment 2

The assignment (N2)

DO SOMETHING SMART ABOUT IT!

Jacek Malec, http://rss.cs.lth.se 12(24)

EDAF95/EDAN40 Assignment 2

The assignment N2, more exactly

Given two strings, s and t, and values for scoreMatch,
scoreMismatch and scoreSpace,

find ALL optimal alignments between s and t.

An optimal alignment is one with the highest score. There may be
more than one such alignment in general case.

Jacek Malec, http://rss.cs.lth.se 13(24)

EDAF95/EDAN40 Assignment 2

Speaking Haskell

optimalAlignments :: Int -> Int -> Int -> String ->
String -> [AlignmentType]

score :: Int -> Int -> Int -> String -> String -> Int

Given for example:

scoreMatch = 1
scoreMismatch = -1
scoreSpace = -2

the score of the first alignment is -2, while of the second and third
is -5.

Jacek Malec, http://rss.cs.lth.se 14(24)

EDAF95/EDAN40 Assignment 2

Digression: the MCS problem

MCS: Maximal Common Subsequence

A sequence is a subsequence of another sequence if it can be
obtained by deleting zero or more elements from that sequence.

The problem: finding maximal (i.e. the longest) common
subsequence.

E.g. for lists [3,2,8,2,3,9,4,3,9] and [1,3,2,3,7,9] the MCS is
[3,2,3,9] which has length 4.

Jacek Malec, http://rss.cs.lth.se 15(24)

EDAF95/EDAN40 Assignment 2

Digression: the MCS problem

The solution is easy:

mcsLength1 :: Eq a => [a] -> [a] -> Int

mcsLength1 _ [] = 0
mcsLength1 [] _ = 0
mcsLength1 (x:xs) (y:ys)

| x == y = 1 + mcsLength1 xs ys
| otherwise = max (mcsLength1 xs (y:ys))

(mcsLength1 (x:xs) ys)

Jacek Malec, http://rss.cs.lth.se 16(24)

EDAF95/EDAN40 Assignment 2

Digressionˆ2: Fibonacci

-- Naive Fibonacci function
fib 0 = 0
fib 1 = 1
fib m = fib (m-2) + fib (m-1)

-- An algorithm which returns a pair
-- of consecutive Fibonacci numbers.

fibP :: Int -> (Int,Int)
fibP 0 = (0,1)
fibP n = (y,x+y)

where
(x,y) = fibP (n-1)

Jacek Malec, http://rss.cs.lth.se 17(24)

EDAF95/EDAN40 Assignment 2

Digressionˆ2: Fibonacci

-- The list of Fibonacci values, defined directly.

fibs :: [Integer]

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

Jacek Malec, http://rss.cs.lth.se 18(24)

EDAF95/EDAN40 Assignment 2

Digression: the MCS problem

[] 3:[] 2:[3] 3:[2,3] 1:[3,2,3]
[] 0 0 0 0 0
3:[] 0 1 1 1 1
2:[3] 0 1 2 2 2
8:[2,3] 0 1 2 2 2
2:[8,2,3] 0 1 2 2 2
3:[2,8,2,3] 0 1 2 3 3

Jacek Malec, http://rss.cs.lth.se 19(24)

EDAF95/EDAN40 Assignment 2

Digression: the MCS problem

mcsLength :: Eq a => [a] -> [a] -> Int
mcsLength xs ys = mcsLen (length xs) (length ys)

where
mcsLen i j = mcsTable!!i!!j
mcsTable = [[mcsEntry i j | j<-[0..]] | i<-[0..]]
mcsEntry :: Int -> Int -> Int
mcsEntry _ 0 = 0
mcsEntry 0 _ = 0
mcsEntry i j

| x == y = 1 + mcsLen (i-1) (j-1)
| otherwise = max (mcsLen i (j-1)) (mcsLen (i-1) j)
where

x = xs!!(i-1)
y = ys!!(j-1)

Jacek Malec, http://rss.cs.lth.se 20(24)

EDAF95/EDAN40 Assignment 2

The assignment N2 consists of

1 Answering some questions regarding the problem;
2 Writing some functions:

similarityScore :: String -> String -> Int
similarityScore string1 string2
maximaBy :: Ord b => (a -> b) -> [a] -> [a]
maximaBy valueFcn xs

For example, maximaBy length ["cs", "efd", "lth",
"it"] should return ["efd", "lth"].

3 Solving the problem:
type AlignmentType = (String,String)
optAlignments :: String -> String -> [AlignmentType]
outputOptAlignments :: String -> String -> IO ()

Jacek Malec, http://rss.cs.lth.se 21(24)

EDAF95/EDAN40 Assignment 2

Example

scoreMatch = 0
scoreMismatch = -1
scoreSpace = -1
string1 = "writers"
string2 = "vintner"

Main> similarityScore string1 string2
-5
Main> optAlignments string1 string2
[("writ-ers","vintner-"), ("wri-t-ers","-vintner-"),
("wri-t-ers","v-intner-")]

Jacek Malec, http://rss.cs.lth.se 22(24)

EDAF95/EDAN40 Assignment 2

Example

Main> outputOptAlignments string1 string2
There are 3 optimal alignments:

w r i t - e r s
v i n t n e r -

w r i - t - e r s
- v i n t n e r -

w r i - t - e r s
v - i n t n e r -

There are 3 optimal alignments.

Jacek Malec, http://rss.cs.lth.se 23(24)

EDAF95/EDAN40 Assignment 2

Optimisation

Your program should be able to handle the following pairs of strings
(or even longer ones) within a couple of seconds:

newOptAlignments "aferociousmonadatemyhamster"
"functionalprogrammingrules"

newOptAlignments "bananrepubliksinvasionsarmestabsadjutant"
"kontrabasfiolfodralmakarmästarlärling"

Jacek Malec, http://rss.cs.lth.se 24(24)

