

EDAF95/EDAN40: Functional Programming Assignment 1F: Verify Sudoku Assignment 1N: Chatterbots

Jacek Malec

Dept. of Computer Science, Lund University, Sweden

April 3rd, 2023

The course(s)

EDAF95

Programming partner search

EDAN40:

- Go to canvas
- If you are alone, register into an assignment group as first member, then
- Wait for contact, annouce it on discord, or
- Contact someone else registered alone in some other group.
- You should be able to move yourself between groups.

2 EDAF95

work in lab groups

folds and infinite arguments

foldl :: $(a \rightarrow b \rightarrow a) \rightarrow a \rightarrow [b] \rightarrow a$ foldl f z [] = z foldl f z (x:xs) = foldl f (f z x) xs foldr :: $(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b$ foldr f z [] = z foldr f z (x:xs) = f x (foldr f z xs)

folds and infinite arguments

Consider folding a list of *n* values [x1, x2, x3, x4 ... xn] with some function f and seed z.

foldl is:

Left associative:

f (... (f (f (f (f z x1) x2) x3) x4)...) xn

- Tail recursive: It iterates through the list, producing the value afterwards
- Lazy: Nothing is evaluated until the result is needed
- Backwards: foldl (flip (:)) [] reverses a list.

folds and infinite arguments

Consider folding a list of *n* values [x1, x2, x3, x4 ... xn] with some function f and seed z.

foldr is:

Right associative:

f x1 (f x2 (f x3 (f x4 ... (f xn z)...)))

- Recursive into an argument: Each iteration applies f to the next value and the result of folding the rest of the list.
- Lazy: Nothing is evaluated until the result is needed
- Forwards: foldr (:) [] returns a list unchanged.

IO and Random

A fragment of Chatterbot.hs:

```
stateOfMind :: BotBrain -> IO (Phrase -> Phrase)
{- TO BE WRITTEN -}
stateOfMind _ = return id
```

return is of type:

return :: a -> m a

while in System.Random you have

randomIO :: IO n

where n is an (almost) arbitrary numeric type.

Sudoku (F1)

The task (F1)

All solutions are easily found on the net. Please don't use them. **Learn!**

- Read the task description and make sure you understand it. What do you need to verify?
- ② Build up your code bottom-up to get the desired functionality.
- Polish your code to get point-free style as much as possible. You will be helped by the LA and TAs;
- Use HLint for suggestions how to improve it;
- Work in pairs. Ask others if you need. Ask TAs. Ask me. Don't copy! Do learn.

Chatterbots (N1)

A *chatterbot* is a program that attempts to simulate typed conversation, with the aim of at least temporarily fooling a human into thinking they are talking to another person.

- Eliza (Joseph Weizenbaum, 1966), Analiza:-), M-x doctor
- Turing test
- Loebner prize (not any longer)
- Elbot (www.elbot.com) Artificial Solutions, SAS, IKEA
- Cleverbot (www.cleverbot.com), fun
- 85% of the customer support nowadays is done without human intervention!

But be careful!

ABP	D		🗎 chat.openai.com/chat					මා ය		
educatio	nal 🗸	Software \checkmark	SynBio 🛩 Seman	tic Web stuff 🗸 🛛 EU 🗸	Admin/Ledning ~	Banki 🖌 Wyda	tki Malców Meeting	g agenGoogle Docs	News 🗸 🛛 Travel 🗸	jacek 🗸 https://mina
chat	ę	DALL	S GPT L	S Tesla'	S Civilia	O Al can	>S Weap	😸 A Cha	() 'Part	U) The D
			x explain why is multiplication not commutative							
	Multiplication is not commutative because the order of the numbers being mult change the result. For example, 2 x 3 is not the same as 3 x 2, the former equal latter is 9. Commutativity applies only to operations where the order of the num doesn't change the outcome, like addition.							rs being multipli former equals 6 er of the numbe	ed can à and the ers	

The task (N1)

All solutions are easily found on the net. Please don't use them. **Learn!**

- Read the existing code and make sure you understand it;
- Write your code in places marked by {- TO BE WRITTEN -}
- When you get Eliza running, polish your code to get point-free style as much as possible. You will be helped by the TAs;
- Use HLint for suggestions how to improve it;
- Work in pairs. Ask others if you need. Ask TAs. Ask me. Don't copy! Do learn.
- Enjoy.