
EDAF95: Lab 4
The Sudoku solver, ver. 2.0

Adrian Roth and Jacek Malec

April 27, 2021

The goal of this lab is to understand how a Sudoku puzzle solver can be imple-
mented in Haskell. In the process you will learn about monads and the bind
function.
All functions you are asked to write during the labs are meant to be used as
inspiration for solving the assignments. If you find an approach that you think
is more logical and easier to understand, we would be happy to hear about it!

To pass this lab the preparation tasks should be completed prior to the lab and
then all tasks should be completed and presented to the supervisor.

Preparatory exercises: Reusing old concepts
Your previous struggles with the first assignment will now pay off since you will
reuse the concepts and benefit from your understanding of peers and squares.
From EDAF95 Lab material menu on the course web page you can download a
SolveSudoku.hs file containing an implementation of these structures and some
additional stuff such as the parseBoard function. The parseBoard function is
not yet working since the assign function is not implemented, so you will have
to think more on this problem later in the lab.

First discuss with your peer what is the Board type and how is the infAllDigits
used?

Now implement a bunch of functions which will appear useful later. Trust
your instincts in what they should do.

Task 1: Implement the function:
map2 :: (a -> c, b -> d) -> (a, b) -> (c, d).

Task 2: Implement the function:
mapIf :: (a -> a) -> (a -> Bool) -> [a] -> [a].

Task 3: Implement the function:
maybeOr :: Maybe a -> Maybe a -> Maybe a.

1



EDAF95 Lab 4 v.2.0 2

Task 4: Implement the function:
firstJust :: [Maybe a] -> Maybe a.

Task 5: Implement the function:
lookupList :: Eq a => a -> [(a, [b])] -> [b].

These are helper functions that will take care of possible (partial) solutions
of a Sudoku puzzle.

Part 1: Binding your knowledge with bind
The use of the bind function will be a required part of the solver in Assignment
2F and therefore we will cover it more thoroughly in this part of the lab. We
will use the bind function on a Maybe data type and therefore we can write a
specific type signature for it:
maybeBind :: Maybe a -> (a -> Maybe b) -> Maybe b
This function takes a Maybe a data type object as its first parameter, while
the second argument is a function. This function takes a (pure) type a and
after manipulation and possible conversion returns the type b inside the Maybe
context. You should remember from the last assignment that a Maybe type is
often used when there is a possibility of failure. We want to use Maybe in the
same manner, where the failure is an unsolvable Sudoku and we can phrase our
usage of the bind function as: We want to apply a function that might fail on
a value that might already have failed.

Let us get through an example. We want to replace multiple items in a list
and we also only want the result to be valid if each replacement replaces a valid
element.

Task 1: Implement the function:
maybeBind :: Maybe a -> (a -> Maybe b) -> Maybe b
Hint: If the first argument is Nothing the function should return Nothing. Oth-
erwise it should return the result of the second parameter function applied on
the value inside the first parameters Maybe context.

Task 2: Copy the function:

tryReplace :: Eq a => a -> a -> [a] -> Maybe [a]
tryReplace _ _ [] = Nothing
tryReplace y y’ (x:xs)

| x == y = Just (y’:xs)
| otherwise = fmap (x:) $ tryReplace y y’ xs

How does it work? What does the fmap function do?



EDAF95 Lab 4 v.2.0 3

Now we want to successively replace the first occurrence of different items
in a list. Firstly let us say we have a list:
[1,2,3]
We want to, in the following order, replace:

• 1 with 3

• 3 with 2

This should in the end return a Just [2,2,3].
A second sequence:

• 1 with 3

• 1 with 2

• 2 with 1

should instead return Nothing since the second replacement is invalid. To im-
plement the first replacement sequence we can use case statements and get:

doIt :: Maybe [Int]
doIt = case tryReplace 1 3 [1,2,3] of

Nothing -> Nothing
Just l1 -> case tryReplace 3 2 l1 of

Nothing -> Nothing
Just l2 -> tryReplace 2 1 l2

Though this is neither pretty nor generic for use with larger sequences. As you
might have guessed we can instead use our bind function (in infix) to get:

doIt :: Maybe [Int]
doIt = Just [1,2,3] ‘maybeBind‘ tryReplace 1 3 ‘maybeBind‘

tryReplace 3 2 ‘maybeBind‘ tryReplace 2 1

This implementation can be much easier expanded into recursion and folding.
This is why the bind function is so useful.

Task 3: Write a function recursiveReplacement :: [a] -> [a] -> [a]
-> Maybe [a] which can perform the task explained above through recursion
with maybeBind and test it with 2 sequences of your own.

When you are familiar with the maybeBind function you can now, if you want,
use the real bind function instead:

(>>=) :: Monad m => m a -> (a -> m b) -> m b

This is a generalised version which works for all data types that are instances
of the type class Monad. Conveniently, Maybe is an instance of the Monad type
class which means you can use it for the assignment. It might be useful to be
aware of the flipped version of the bind function as well:

(=<<) :: Monad m => (a -> m b) -> m a -> m b



EDAF95 Lab 4 v.2.0 4

Part 2: The assign function
The goal of this part is to implement a function that assigns a value to a square
and then propagates elimination of that value from all the peers of the square.
For each elimination of a value from a square, where we might run into a Sudoku
which is unsolvable, we will consider three different special cases:

• After elimination there are no more possible values to insert in this square.

• The elimination does nothing since the value has already been eliminated
from this square.

• There is only a single possible value left to put in this square.

These cases will be taken care of in a help function to the assign function,
called eliminate. But first you will implement two other help functions.

Task 1: Implement the functions:
setValue, eliminateValue :: Int -> String -> Board -> Board.
The first function sets an Int value to the string square in the Board and the
eliminateValue does the same for elimination.
Hint: Use the functions mapIf and map2 you have prevously implemented.

Task 2: Implement the function:
eliminate :: Int -> String -> Board -> Maybe Board
which considers the special cases mentioned above to try and eliminate a value
from a square. If unsuccessful it should return the Maybe value for failure.
Hint: Use guards and the where syntax and some of the previously imple-
mented functions.

Task 3: Implement the function:
assign :: Int -> String -> Board -> Maybe Board.
Hint: Start by using a help function assign’ for recursion of the peers in the
elimination of a value together with the bind function.

Task 4: Now try to parse a Sudoku with the parseBoard function.

We will now look at how you can find a solution to a given Board.

Part 3: Solving the puzzle
The remaining board, after parsing, will be solved simply by trying every pos-
sible combination and the first one that works, if it exists, will be used as the
solution. To begin with, we can write a help function
solveSudoku’ :: [String] -> Board -> Maybe Board.
This function takes a list of squares as its first argument, which it can go through
recursively. For each recursive step it will try to assign one of the values which



EDAF95 Lab 4 v.2.0 5

are still possible to insert into the square (as found in the board argument).
If assigning the value is successful then continue to the next square, one step
deeper in recursion. Then if none of the possible values to put in the square are
valid (according to the assign function) return up one step and continue with
the next possible value for the square in this recursion step.
This might sound tricky but if bind and map are used together with the im-
plemented functions assign, firstJust, and lookupList, you can write one
beautiful recursive expression where the lazy evaluation of Haskell will do the
rest.

Finally, use this function together with the parseBoard to write the function
solveSudoku :: String -> Maybe Board and test that it works as expected.


