
EDAF95: Lab 3
Working with IO, ver. 3.1

Adrian Roth, Karl-Oskar Rikås, Jacek Malec

April 8, 2022

The goal of this lab is to use your Sudoku board implementation in a program
performing I/O so that you can automate some functionality, in particular re-
lated to testing, and figure out how to make your own interaction loop.

Preparatory exercises: IO annotation
The concept of IO type class in Haskell is quite unlike anything one can
encounter in many other programming languages. Firstly, the IO type class
is used to distinguish pure computations from computations where side effects
must be considered. A value of type IO a is like any other first-class value that
you can pass around, however IO indicates that this value represents some kind
of side-effect. So what are side effects? Functions affected by side effects are
also described as impure as they can give different results for the same input
values. Their opposite, pure functions, behave “properly” and will always return
the same result for the same input. Examples of functions with side effects are
functions that create random numbers, take input from files or users and write
output to files or output devices.

A function with side effect should return a value in the IO context (more
formally, in the IO monad), like func :: a -> IO b. IO is a monad, similarly
to e.g., Maybe, but with one big difference:

• You can extract a value from Maybe with its constructor and write a
function such that the output depends on the value inside:
f1 :: Maybe Int -> String

• but you cannot extract a value from the IO context so that the output
depends on the value inside it:
f2 :: IO Int -> String. (NOT POSSIBLE!)

Thus IO is special because a value from a side-effect-influenced operation cannot
escape its type.

1



EDAF95 Lab 3 v.3.1 2

Task 1: Write a simple function called
giveMeANumber :: IO ()
that reads two integer values from input, and prints a random number in be-
tween those values, using the function randomRIO :: (a, a) -> IO a.
Hint: Import System.Random, and use
read :: Read a => String -> a
to parse the input to the correct type.
(Should be) Impossible challenge: If you do think you can write this function
as something not returning an IO (and, of course, not using unsafePerformIO),
why not try.

Task 2: Choose one IO function that you think either will be useful in the
last assignment or is interesting. Try to understand how it works and why it
needs to be IO.
Hint: Try browsing the IO prelude documentation on Hackage https://hackage.
haskell.org/package/base-4.12.0.0/docs/Prelude.html, focusing on the
Basic Input and Output section.
Challenge: Find a function that the lab supervisor is not familiar with.

Task 3: Write the function printSudoku :: [(String, Int)] -> IO ()
that takes a Sudoku board and pretty prints it to a table-like structure.
Hint: show :: Show a => a -> String
is useful to convert a number into a string. Besides, the do notation might come
handy, see lecture 6.

Lab Assignment: Reading and Writing Sudoku
Task 1: Adapt your function for pretty printing Sudoku so that it can indicate
where in a Sudoku something is wrong (both simple and blocked conflicts, see
lab 2).

Task 2: Write a Haskell program (with main function) for reading a file with
multiple Sudoku in a format similar to one in http://norvig.com/easy50.txt.
Use your verifySudoku function to check which of the freshly read boards are
valid. You can assume one size for all boards in the file.
Note: make sure that you can detect the size of Sudoku while reading it and
make sure you can adapt to it. Challenge: For the invalid ones, pretty print
the board together with some indication in which unit the error was found.

https://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html
https://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html
http://norvig.com/easy50.txt

