
EDAF95: Lab 2
Building your own Sudoku puzzle, ver. 2.03

Adrian Roth and Jacek Malec

April 8, 2022

The goal of this lab is to continue with the Sudoku board and, in addition, work
with Hlint and the algebraic data structure Maybe.

All functions you are asked to write during the labs are meant to be used as
inspiration for solving the assignments. If you find an approach that you think
is more logical and easier to understand, we would be happy to hear about it!

To pass this lab the preparation tasks should be completed prior to the lab and
then all tasks should be completed and presented to the teaching assistant.

Preparation Part: Sudoku problem
To make a smooth implementation of a Sudoku in Haskell one approach is
to use the concepts of squares, units and peers. Squares have already been in-
troduced together with the square strings. From the rules of Sudoku we know
that each square has three units, one row unit, one column unit and one box
unit. For example the square A1 has the row unit A, column unit 1 and box
unit top left in a 4x4 board. Or with the square strings the units of A1 are
[["A1","A2","A3","A4"],["A1,"B1","C1","D1"], ["A1","A2","B1","B2"]]. At
last the peers of square A1 are the units of A1 without duplicates and without
itself, ["A2", "A3","A4","B1","C1","D1","B2"]. The peers of each square will
be very useful in the implementation of a Sudoku validator and solver.

The next goal is to make a list of tuples where each tuple is a square string
together with a list of its peers, peers :: [(String, [String])], initially
for a 4x4 board, which we will attempt in smaller steps.

Task 1: Calculate a value unitList :: [[String]] of all the possible units
(all rows, all cols and all boxes).
Hint: use the cross function and list comprehensions.

Task 2: Write a function filterUnitList which takes a square as input and

1



EDAF95 Lab 2 v.2.03 2

use the unitList to return the three units which the square belongs to.
Hint: use the containsElem function.
Challenge: write this function in a point-free style.

Task 3: Calculate the value units which is a list of tuples where each tuple is a
square string together with its corresponding three units, [(String, [[String]])].
Hint: use the filterUnitList function.

Task 4: Write function foldList :: [[a]] -> [a] which takes a list of
lists and concatenates all sublists into a single list.
Challenge: write this function in a point-free style using higher order functions.

Task 5: Write function removeDuplicates which takes a list and, surpris-
ingly, removes all duplicates in that list. Hint: Use the containsElem function.

Task 6: Calculate the value peers as presented above, remembering that the
square string itself is not its own peer.
Hint: use the two functions implemented earlier and the units value.

Part 1: linting your code
As written in the wikipedia article on lint (https://en.wikipedia.org/wiki/
Lint_(software)) a linter is a tool which can locate both syntax and stylistic
errors in code. The hlint tool is adapted for Haskell as you might have
guessed and the usage is:
hlint filename,
(e.g., hlint Sudoku.hs). Even though your program is working, hlint will
give you suggestions for how to properly express your code in Haskell. As
seen in the instructions for Assignment 1 it is assumed and strongly encouraged
that you refine your code using this tool prior to submission.

After the linting you can probably feel your refactoring momentum and we
should definitely not slow down. We continue by realising that there is a Prelude
function called elem which does exactly the same thing as containsElem. Why
not switch and remove containsElem. There is also a Prelude function that
performs exactly what foldList does, find and replace.

The next thing we are concerned with is that the instructions for Assignment
1 say that we are only allowed to use prelude functions. Now most of you have
used the Data.Char function digitToInt which means that you now should
implement this function yourself. When you are done, do the same for all other
non prelude functions you might have used in your code so far.
Hint: Remove all import statements and try to compile or load your code. The
errors will show which functions you have used that are not included in Prelude.

Task 1: Lint your Haskell code.

https://en.wikipedia.org/wiki/Lint_(software)
https://en.wikipedia.org/wiki/Lint_(software)


EDAF95 Lab 2 v.2.03 3

Part 2: The Maybe data type
The Maybe data type is commonly used in Haskell when a function needs to
handle possible error situations or exceptions.

Task 1: The lookup function. Look at its type and discuss what it does,
and determine for which inputs it returns Nothing.

Task 2: Write a function
fromMaybe :: a -> Maybe a -> a
where the Maybe value is returned if it is Just and the first parameter otherwise.

Task 3: Write a function
getPeers :: String -> [String]
which returns the peers of the first parameter (the square string) using the
peers value.
Hint: Use the functions lookup and fromMaybe.
Challenge: Write this function in a point-free style.

Task 4: Write a function
justifyList :: [Maybe a] -> [a]
which takes a list of Maybe objects and outputs a list of only the Just element
values (without the constructor Just).

Task 5: Write a function
lookups :: Eq a => [a] -> [(a, b)] -> [b]
which is similar to the lookup function but takes a list of input values.
Hint: Use the functions lookup and justifyList.
Challenge: Write this function with only one point (one parameter).
Flipping Challenge: Write this function in point-free style. (Why is this
called flipping challenge?)

Part 3: Sudoku Verifier, simple conflicts
In this part we will focus on the first problem of verifying a Sudoku, namely on
considering the non empty squares. If a filled square has the same value as any
of its peer squares the Sudoku is not consistent and the verifySudoku function
should return False.

Remember that:

type Board = [(String, Int)]
type Sudoku = String

Task 1: Write a function
validSquare :: (String, Int) -> [(String, Int)] -> Bool
which checks if a single square tuple is valid in a Sudoku board.



EDAF95 Lab 2 v.2.03 4

Hint: If the square is empty we currently consider it consistent and otherwise
use the functions elem, lookups and getPeers to see if the value is consistent.

Task 2: Write a function validBoard which checks whether all the squares
in a board are valid.

Task 3: Write the function verifySudoku using previously implemented func-
tions.

Task 4: Test your verifier with both consistent and inconsistent input data.
Maybe prepare some test values inside your source code or create a test file. If
you are adventurous, you may consider creating a unit test for your verifier.

Part 4: Sudoku verifier, blocking conflicts
At last we will consider the blocking conflicts introduced in Assignment 1, which
might occur in a Sudoku. To find the blocking we need to now instead of the
squares look at each unit and see if a unit is valid. As you remember a unit can
either be a row, column or box where each square inside the unit is either empty
or filled with a value. Now to check if there exists a blocking situation we can
first for each empty square calculate all possible fill values without introducing
simple conflicts to the square’s peers. Secondly each unit will be checked for
blocking in the following manner:

• For the squares with only one possible fill value in a unit, including the
filled squares, no two squares have the same value (similar to the simple
conflicts introduced above).

• For all squares in a unit verify that every possible square value [1..4]
for 4x4 or [1..9] for 9x9 can be inserted into at least one of the squares.

Task 1: Write a function reduceList which from two input lists removes oc-
currences of elements in the second list from the first list.

Task 2: Revisit the function validSquare which is now rewritten to

validSquareNumbers ::
(String, Int) -> [(String, Int)] -> (String, [Int])

This function returns a tuple where the second part of the tuple is a list of
values which can be inserted in that square. For a filled square (sq, v) (v is
value of non empty square) it is reasonable to return either a list with only that
value ((sq, [v])), or an empty list ((sq, [])) if the filled square is invalid, as
implemented in Part 3 of this lab.

Task 3: Change the function validBoard to validBoardNumbers which maps
the validSquareNumbers function onto the full board.



EDAF95 Lab 2 v.2.03 5

Task 4: Write a function validUnit :: [String] -> [(String, [Int])]
-> Bool which checks if a unit is valid. Here it is important to remember the
second point in the list above (possibility to insert every value in a unit) so read
it carefully and you will get it right.
Hint: The functions and, elem, concat, lookups can be used for this.

Task 5: Write a function validUnits which checks if all units in the vari-
able unitList are valid for a Sudoku board.

Task 6: Update verifySudoku.

You are done. Now you should be able to finish Assignment 1.


