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The goal of this lab is to start practising Haskell programming and write
elementary functions that might prove useful for solving Assignment 1, Verify
Sudoku. In particular, we are going to work with a Sudoku board and look at
how it can be represented as a Haskell data structure. Before the lab you
should have attempted to do all preparation exercises and be able to explain
your thoughts about a solution for each one.
All functions you are asked to write during the labs are meant to be used as
inspiration for solving the assignments. If you find an approach that you think
is more logical and easier to understand, we would be happy to hear about it!

To pass this lab the preparation tasks should be completed prior to the lab and
then all tasks should be completed and presented to the teaching assistant.

Preparation exercises: Programming in Haskell

Step 1: Installing the Glasgow Haskell Compiler (GHC). If you are using
the stationary computers in the E building you can skip this step. Check out
https://www.haskell.org/downloads/ for installation instructions on various
operating systems. The student system in the E building runs GHC 7.10.3, but
it might be wise to grab the most recent version.
Step 2: Using the interpreter repl1 ghci. Open a terminal and write ghci (or
open WinGHCi on Windows) where a command line is opened like in python or
Matlab. Test by writing Haskell code like

• 1 : [1,2,3].

• (:) 1 [1,2,3].

• [’a’, ’b’] ++ [’c’, ’d’]

• map (2+) [1, 2, 3, 4]

1read-eval-print loop

1

https://www.haskell.org/downloads/
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• Now look at the type of some functions by writing :t map, :t (:), :t (++)
and :t map (2+). Discuss what the type means?

Step 3: Loading files with code into the interpreter.

• Create a file Sudoku.hs with the following contents:

module Sudoku where

rows = "ABCD"
cols = "1234"

containsElem :: Eq a => a -> [a] -> Bool
containsElem _ [] = False
containsElem elem (x:xs)

| elem == x = True
| otherwise = containsElem elem xs

• In the ghci repl write :load Sudoku (make sure that the file is in the
same directory as the terminal running ghci).

• Try running containsElem 1 [1,2,3], containsElem ’a’ "cde" and
other examples to see what happens.

• Discuss what the type specification means, containsElem :: Eq a =>
a -> [a] -> Bool. What is a and Eq?

Task: Write a function cross :: [a] -> [a] -> [[a]] to use for the Sudoku
which take two lists as input parameters and returns a list of lists of all combi-
nations of the elements in the input lists.
Example cross [1,2,3] [4,5] = [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]].
Hint: check out list comprehensions from lecture 2 or on the internet.

Part 1: Sudoku board
The input 4x4 Sudoku board will in this lab be represented by a string of
characters that are either a digit [0..4] or a dot ’.’. An example Sudoku string
is "0100200300040000"or ".1..2..3...4...."which are both representations of the
same 4x4 board shown below.

1
2 3

4

Task 1: To have a uniform representation of the input string we will first write
a function to convert all ’.’ characters to ’0’ characters in the input string.
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Write a function replacePointsWithZeros that takes a string as input and
returns a string with all ’.’ replaced with ’0’. Try to also write the function
type specification, look at the containsElem and cross functions for examples.

A 9x9 Sudoku is represented by a number of squares where each square either
has a value [1..9] or is empty. Each square can be represented with a 2 character
string, from now on referenced to as the square string, which is a letter for each
row and a number for the column as in the following board.
A data structure to represent the Sudoku board in Haskell can be a list of
pairs, [(String, Int)], where the string stands for the square name and the
integer is the value in this square (e.g., zero).

A1 A2 A3 A4
B1 B2 B3 B4
C1 C2 C3 C4
D1 D2 D3 D4

Task 2: To create the data structure mentioned above a first step is to make a
list of all the possible square strings ["A1","A2",..,"D4"] in a 4x4 and then 9x9
Sudoku board (if you are creative you can also do a 16x16 board as well).
Hint: Use the cross function and the rows and cols variables.

Task 3: Write a function parseBoard which takes a board string as input
and returns a list of tuples representing the board as mentioned above. The list
of tuples will from here on be referenced to as the board.
Hint: use the functions replacePointsWithZeros, zip, map and digitToInt
together with the list of square strings. Remember to write import Data.Char
for the digitToInt function to be in scope.

Part 2: Sudoku problem
The rest of the tasks will also be preparation exercises for the next lab.

To make a smooth implementation of a Sudoku in Haskell one approach is
to use the concepts of squares, units and peers. Squares have already been in-
troduced together with the square strings. From the rules of Sudoku we know
that each square has three units, one row unit, one column unit and one box
unit. For example the square A1 has the row unit A, column unit 1 and box
unit top left in a 4x4 board. Or with the square strings the units of A1 are
[["A1","A2","A3","A4"],["A1,"B1","C1","D1"], ["A1","A2","B1","B2"]]. At
last the peers of square A1 are the units of A1 without duplicates and without
itself, ["A2", "A3","A4","B1","C1","D1","B2"]. The peers of each square will
be very useful in the implementation of a Sudoku validator and solver.

The next goal is to make a list of tuples where each tuple is a square string
together with a list of its peers, peers :: [(String, [String])], initially
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for a 4x4 board, which we will attempt in smaller steps.

Task 1: Calculate a value unitList :: [[String]] of all the possible units
(all rows, all cols and all boxes).
Hint: use the cross function and list comprehensions.

Task 2: Write a function filterUnitList which takes a square as input and
use the unitList to return the three units which the square belongs to.
Hint: use the containsElem function.
Challenge: write this function in a point-free style.

Task 3: Calculate the value units which is a list of tuples where each tuple is a
square string together with its corresponding three units, [(String, [[String]])].
Hint: use the filterUnitList function.

Task 4: Write function foldList :: [[a]] -> [a] which takes a list of
lists and concatenates all sublists into a single list.
Challenge: write this function in a point-free style using higher order functions.

Task 5: Write function removeDuplicates which takes a list and, surpris-
ingly, removes all duplicates in that list.

Task 6: Calculate the value peers as presented above, remembering that the
square string itself is not its own peer.
Hint: use the two functions implemented earlier and the units value.


