{-

This is a list of selected functions from the standard Haskell modules:

Prelude
Data.List
Data.Maybe
Data.Char

-- standard type classes

class Show a where
show :: a -> String

class Eq a where
(==), (/=) :: a -=> a -> Bool

class (Eq a) => Ord a where
(<), (<=), (>=), (>) :: a -> a -> Bool
max, min tta -> a -> a

class (Eq a, Show a) => Num a where
(F)r (=), (%) a->a ->a

negate i a -> a
abs, signum t: a -> a
fromInteger :: Integer -> a

class (Num a, Ord a) => Real a where
toRational :: a -> Rational

class (Real a, Enum a) => Integral a where
quot, rem :ta->a->a
div, mod :a->a->a
toInteger : a -> Integer

class (Num a) => Fractional a where
(/) :: a ->a ->a
fromRational :: Rational -> a

class (Fractional a) => Floating a where
exp, log, sqgrt t: a -> a
sin, cos, tan :: a -> a

class (Real a, Fractional a) => RealFrac a where
truncate, round :: (Integral b) => a -> b
ceiling, floor :: (Integral b) => a -> b

-- numerical functions

even, odd :: (Integral a) => a -> Bool
even n =n “rem 2 == 0
odd = not . even

-- monadic functions

sequence :: Monad m => [m a] -> m [a]
sequence = foldr mcons (return [])
where mcons p g = do x <- p; Xs <- g; return (x:xs)

: Monad m => [m a] ->m ()
do sequence xs; return ()

sequence__
sequence__ Xs

—-- functions on functions

id t: a -> a
id x = x
const tta ->b -> a
const x _ = X
(-) t: (b ->¢c) -> (a ->Db) ->a ->c
f.gq =\ x ->f (g x)
flip t: (a ->b ->c) -=>b ->a ->c
flip £ x y =fyx
$) :: (a -=> b) -=> a ->Db

)
$ x = f x

-- functions on Bools

data Bool = False | True

(&&), (|]) :: Bool -> Bool -> Bool
True && X = X

False && _ = False

True || _ = True

False || x = x

not :: Bool -> Bool

not True = False

not False = True

-- functions on Maybe

data Maybe a = Nothing | Just a

isJust :: Maybe a -> Bool
isJust (Just a) = True

isJust Nothing = False

isNothing :: Maybe a -> Bool
isNothing = not . isJust
fromJust :: Maybe a -> a
fromJust (Just a) = a

maybeToList :: Maybe a -> [a]
maybeToList Nothing =]

maybeToList (Just a) = [a]

listToMaybe :: [a] -> Maybe a
listToMaybe [] = Nothing
listToMaybe (a:_) = Just a

-- functions on pairs

fst t: (a,b) -> a

fst (x,y) = X

snd :: (a,b) -=> b

snd (x,Y) =y

curry t: ((a, b) -=>c¢) -=>a ->b ->c
curry £ x y = f (x, y)

uncurry t: (a -=> b ->c) -> ((a, b) -> ¢c)

uncurry f p f (fst p) (snd p)

-- functions on lists

map :: (a -> b) -> [a] -> [b]
map £ xs = [£ X | x <= xs]

(++) :: [a] -> [a] -> [a]
xs ++ ys = foldr (:) ys xs

filter :: (a -> Bool) -> [a] -> [a]
filter p xs = [X | x <= xs, p X |

concat :: [[a]] -> [a]
concat xss = foldr (++) [] xss

concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f = concat . map f

head, last t: [a] -> a
head (x:_) = X

last [x] = X

last (_:xs) = last xs
tail, init t: [a] -> [a]
tail (_:xs) = xS

init [x] =11

init (x:xs) = x : init xs
null :: [a] -> Bool
null [] = True

null (_:_) False

length HH
length [] =0
length (_:1)

[a] -

> Int

1 + length 1

(') :: [a] -> Int -> a
(x:_) 1t 0 = X
(_:xs) !! n = xs !! (n-1)
foldr : (a ->b ->b) -=>b ->[a] -> b
foldr £ z [] z
foldr £ z (x:xs) = f x (foldr f z xs)
foldl : (a ->b ->a) ->a -> [b] -> a
foldl £ z [] z
foldl f z (x:xs) = foldl £ (f z x) xs
iterate t: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)
repeat t:a =-> [a]
repeat x = xs where xs = x:Xs
replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)
cycle t: [a] -> [a]
cycle [] error "Prelude.cycle: empty list"
cycle xs = xs' where xs' = xs ++ xs'
take, drop :: Int -> [a] -> [a]
take n _ | n<=0= 1]
take _ [] = [1
take n (x:xs) = x : take (n-1) xs
drop n xs | n <= 0= xs
drop _ [1 = [1
drop n (_:xs) = drop (n-1) xs
splitAt : Int -> [a] -> ([al,[a])
splitAt n xs = (take n xs, drop n xs)
takeWhile, dropWhile t: (a => Bool) -> [a] -> [a]
takeWhile p [] = 11
takeWhile p (x:xs)
| p x x : takeWhile p xs
| otherwise = []
dropWhile p [] = 11
dropWhile p xs@(x:xs')
| p x dropWhile p xs'
| otherwise = xs
lines, words :: String -> [String]
-- lines "apa\nbepalncepa\n" == ["apa","bepa", "cepa"]
-- words "apa bepa\n cepa" == ["apa","bepa","cepa"]
unlines, unwords :: [String] -> String
-- unlines ["apa","bepa",'"cepa"] == "apa\nbepa\ncepa"
-- unwords ["apa","bepa","cepa"] == "apa bepa cepa"
reverse t: [a]l => [a]
reverse = foldl (flip (:)) []
and, or :: [Bool] -> Bool
and = foldr (&&) True
or = foldr (|]|) False
any, all :: (a -> Bool) -> [a] -> Bool
any p = or . map p
all p = and . map p
elem, notElem :: (Eq a) => a -> [a] -> Bool
elem x = any (== X)
notElem x = all (/= x)

lookup HE]
lookup key []

(Eq a) => a -> [(a,b)] -> Maybe b

Nothi

lookup key ((x,y):xys)

| key == =
| otherwise =

sum, product HH
sum =
product =

Just
looku

(Num
foldl
foldl

ng

y

p key xys

a) => [a] -> a

(+) 0
(*) 1

maximum, minimum :: (Ord a) => [a] -> a
maximum [] error "Prelude.maximum: empty list"
maximum xs foldll max xs

error "Prelude.minimum: empty list"
foldll min xs

minimum []
minimum xs

zip :: [a] -> [b] -> [(a,b)]
zip = zipWith (,)
zipWith t: (a->b->c) -> [a]->[b]->[c]

zipWith z (a:as) (b:bs)
= 2z ab : zipWith z as bs

zipWwith _ = 1]

unzip :: [(a,b)] -> ([al,[b])

unzip = foldr (\(a,b) ~(as,bs) -> (a:as,b:bs)) ([1,[1])
nub :: Eg a => [a] -> [a]

nub [] =11

nub (x:xs) =x :nub [y | vy <-xs, x /=y]

delete :: Eg a => a -> [a] -> [a]

delete y [] =11

delete y (x:xs) = if x == y then xs else x : delete y xs
(\\) :: Eg a => [a] -> [a] -> [a]

(\\) = foldl (flip delete)

union :: Eqg a => [a] -> [a] -> [a]
union xs ys xs ++ (ys \\ xs)

intersect :: Eqg a => [a] -> [a] -> [a]
intersect xs ys = [x | x <- xs, x “elem’ ys]

intersperse 1 a -> [a] -> [a]
-- intersperse 0 [1,2,3,4] == [1,0,2,0,3,0,4]

transpose t: [[al]l => [[a]l]

- transpose [[11213]1[41516]] == [[11411[21511[316]]
partition :: (a -> Bool) -> [a] -> ([al,[al)
partition p xs = (filter p xs, filter (not . p) xs)
group :: Eqg a => [a] -> [[a]]

Z- group "aapaabbbeee" == ["aa","p","aa","bbb", "eee"]
isPrefixOf, isSuffixOf :: Eq a => [a] -> [a] -> Bool
isPrefixOf [] _ = True

isPrefixOf _ [1] = False

isPrefixOf (x:xs) (y:ys) = x ==y && isPrefixOf xs ys
isSuffixOf x y = reverse x ~isPrefixOf"~ reverse y
sort :: (Ord a) => [a] -> [a]

sort = foldr insert []

insert : (O0rd a) => a -> [a] -> [a]

insert x []
insert x (y:xs)

[x]

if x <= y then x:y:xs else y:insert x xs

-- functions on Char
type String = [Char]

toUpper, toLower :: Char -> Char

-- toUpper 'a' == 'A'

-- toLower 'Z' == 'z'
digitToInt :: Char -> Int
-- digitToInt '8' == 8
intToDigit :: Int -> Char
-- intToDigit 3 == '3’
ord Char -> Int

chr Int -> Char

