
Lund University EDAN40: Functional Programming
Department of Computer Science 1st June 2023, 8–13

Exam

1. Point-free notation

Rewrite the following two definitions into a point-free form (i.e., f = ...,
g = ...), using neither lambda-expressions nor list comprehensions nor
enumeration nor where clause nor let clause:

f x y = 5 / (x + y)

g x y = [y z | z <- [x..]]

2. Type derivation

Find the types of the following expressions:

($ ($))

(. (.))

(: (:))

(== (==))

(|| (||))

3. Proving program properties

The Functor class is defined as follows:

class Functor f where

fmap :: (a -> b) -> f a -> f b

It is mandatory that all instances of Functor should obey:

fmap id = id

fmap (p . q) = (fmap p) . (fmap q)

Assume the following definition of Maybe types as a functor instance:

instance Functor Maybe where

fmap f (Just x) = Nothing

fmap f Nothing = Nothing

Is this a correct definition of a functor instance? Why or why not? Prove
your claim.

1

4. Function composition Below you will find a list of seven equations: at
least one of them is false. Which are the true ones and which are false?

(a) map f . take n = take n . map f

(b) map f . reverse = reverse . map f

(c) map f . sort = sort . map f

(d) reverse . concat = concat . reverse . map reverse

(e) filter p . concat = concat . map (filter p)

(f) filter (p . g) = map (invertg) . filter p . map g

where invertg is defined in such way that

invertg . g = id

(g) map f . filter p = map fst . filter snd . map (fork (f,p))

where

fork :: (a -> b, a -> c) -> a -> (b, c)

fork (f, g) x = (f x, g x)

5. Monadic computations

What is the type and value of the following expression?

do "edan40"; [1, 10, 100]

6. Language

What does it mean that all functions in Haskell are curried?

Good Luck!

2

