
Lund University EDAN40: Functional Programming
Department of Computer Science 25th April 2022, 14–19

Exam
1. Type derivation (1p)

(a) Assume that the type of reduce is

reduce :: a -> a

Find the type of

prepare = reduce . words . map toLower . filter

(not . flip

elem ".,:;*!#%&|")

(b) Given that

map2 :: (a -> b, c -> d) -> (a, c) -> (b, d)

find the destination type b of the following function:

rulesCompile :: [(String, [String])] -> b

rulesCompile = (map . map2) (words . map toLower, map words)

(c) Given that

transformationApply :: Eq a => a -> ([a] -> [a]) -> [a] -> ([a], [a])

-> Maybe [a]

orElse :: Maybe a -> Maybe a -> Maybe a

find the type of

foldr1 orElse (map (transformationApply wildcard f x) pats)

2. Proving program properties (2p)

The Functor class is defined as follows:

class Functor f where

fmap :: (a -> b) -> f a -> f b

It is mandatory that all instances of Functor should obey:

fmap id = id

fmap (p . q) = (fmap p) . (fmap q)

Let Either be defined as follows:

data Either a b = Left a | Right b

Assume the following definition of Either types as a functor instance:

instance Functor (Either a) where

fmap f (Right x) = Right (f x)

fmap f (Left x) = Left x

1



Is this a correct definition of a functor instance? Why or why not? Prove
your claim.

3. Sparks (1p)

Explain what a spark is, and where does it occur in Haskell. What is it
good for?

4. Programming (1p)

Assume we are developing a library for image processing. We might then
represent an image as a function from the unit square [0,1]x[0,1] to
some color type a. Slightly generalized this may be expressed as:

type Image a = Position -> a

type Position = (Float, Float)

We may now for example define:

type Region = Image Boolean

type ColourImage = Image Colour

(a) Write a function

paste :: Region -> Image a -> Image a -> Image a

paste reg im1 im2

which pastes im1 into im2 wherever reg is true. Pasting a into b

replaces values of b by the corresponding values of a.

(b) Implement the following functions which convert ordinary functions
to functions on images:

lift0 :: a -> Image a

lift1 :: (a -> b) -> Image a -> Image b

lift2 :: (a -> b -> c) -> Image a -> Image b -> Image c

so that it, for example, is possible to express the difference between
two images as:

im1 ‘lift2 (-)‘ im2

(c) Describe what you need to do in order to be able to write this differ-
ence as:

im1 - im2

5. Monadic computations (1p)

What is the type and value of e defined below? Motivate your answer.

e k = do

x <- k

Nothing

return 42

Good Luck!

2


