
Lund University EDAF95 (aka EDAF40)
Department of Computer Science 1st June 2023, 8–13

Basics of Functional Programming
Exam

1. Point-free notation (1p)

Rewrite the following two definitions into a point-free form (i.e., f = ...,
g = ...), using neither lambda-expressions nor list comprehensions nor
enumeration nor where clause nor let clause:

f x y = 3 - x / y

g x y = [y z | z <- [1..x]]

2. Type derivation (1p)

(a) (0.2p) Find the type of map iterate

(b) (0.2p) Find the type of curry uncurry

(c) (0.2p) Find the type of uncurry curry

(d) (0.2p) Find the type of curry . uncurry

(e) (0.2p) Find the type of uncurry . curry

3. Functions (1p)

Redefine map f and filter f using foldr.

4. Bind (1p)

Consider the following function:

eliminate1 n [] g = Just g

eliminate1 n (s:ss) g = eliminate n s g >>= eliminate1 n ss

(a) (0.4p) Given that the type of g is Grid,

g :: Grid

write the signature for eliminate1 . Assume the most generic type
for eliminate.

(b) (0.2p) How would your answer look like if the first line were changed
to

eliminate1 n [] g = [g]

(c) (0.4p) Would the second line of the definition be correct after this
change? Answer YES or NO, and motivate.

1



5. (2p) Define a type CircList (or CL for short, if you prefer) defining a
circular list of arbitrary length (and holding arbitrary elements). Our
examples below will use elements of type Int, but your solution should
accommodate any type, even functions. You have to make sure that the
current position is well-defined and accessible for the operations defined
for this type. The picture below illustrates the concept and its possible
representation using a standard list (with the assumption that the first
element defines the current position and that the last position in the list
is virtually glued to the first one in a circular fashion). Please note that
you don’t need to stick to this particular representation, it is just an
illustration of the idea.

1

2

3
4

5
current position [2,3,4,5,1]

Please note that it is your task to define an appropriate type constructor!
Define then for this type the following functions:

perimeter :: CircList a -> Int

currentelem :: CircList a -> Maybe a

nextelem :: CircList a -> Maybe a

previouselem :: CircList a -> Maybe a

insert :: a -> CircList a -> CircList a

delete :: Int -> CircList a -> CircList a

takefromCL :: Int -> CircList a -> [a]

mvCurrentelem :: CircList a -> CircList a

(1) returning the number of elements (positions) in the list; (2) returning
the current element in the list; (3) returning the next element in the list;
(4) returning the previous element in the list; (5) inserting an element
between the current and the previous element in the list and setting the
current element to the freshly inserted one; (6) deleting n first elements
from the list; (7) taking n first elements of the circular list (possibly circling
if necessary); and (8) shifting the current position forward by one element,
respectively. You may, and are actually encouraged to, define any helper
functions you deem appropriate. Examples of the intended functionality:

2



perimeter (CircList [1, 2, 3, 4, 5]) = 5

currentelem (CircList [1, 2, 3, 4, 5]) = Just 1

currentelem (CircList []) = Nothing

nextelem (CircList [1, 2, 3, 4, 5]) = Just 2

nextelem (CircList [1]) = Just 1

previouselem (CircList [1, 2, 3, 4, 5]) = Just 5

insert 6 (CircList [1, 2, 3, 4, 5]) = CircList [6, 1, 2, 3, 4, 5]

delete 2 (CircList [1, 2, 3, 4, 5]) = CircList [3, 4, 5]

takefromCL 4 (CircList [1, 2, 3]) = [1, 2, 3, 1]

mvCurrentelem (CircList [1, 2, 3, 4] = CircList [2, 3, 4, 1]

Finally, define a predicate (i.e., a function with boolean values)

equalCL :: CircList a -> CircList a -> Bool

yielding True if and only if both lists contain the same elements in the
same order, but not necessarily with the same current position. E.g., if
we used the above list representation for circular lists (assuming the end
is glued to the beginning) then

equalCL (CircList [1, 2, 3, 4, 5]) (CircList [3, 4, 5, 1, 2]) = True

equalCL (CircList [1, 2, 3, 4, 5]) (CircList [3, 4, 5, 2, 1]) = False

equalCL (CircList [1, 2, 3, 4, 5]) (CircList [3, 4, 5, 1, 2, 3]) = False

equalCL (CircList [1, 2, 3]) (CircList [2, 3, 1, 2, 3, 1]) = False

Please explain why the last example needs to give the result False.

Good Luck!

3


