
EDAF40
examination

2.5 hp
3rd June 2019

14:00 - 19:00

WRITE ONLY ON ONE SIDE OF THE PAPER - the exams will be scanned in and only the front/
odd pages will be read.

DO NOT WRITE WITH OTHER COLOUR THAN BLACK OR DARK BLUE - lightly coloured text
may disappear during scanning

PUT YOUR ID AND PAGE NUMBER ON EACH PAGE YOU SUBMIT - make sure that the amount
of pages is equal to the amount you note on the front information page

WRITE CLEARLY - if we cannot read you we cannot grade you.

PRELIMINARY AMOUNT OF POINTS: 6 (1+1+1+1+1+1)

{-A list of selected functions from the Haskell modules:
 Prelude
 Data.List
 Data.Maybe
 Data.Char -}
--
-- standard type classes
class Show a where
 show :: a -> String

class Eq a where
 (==), (/=) :: a -> a -> Bool

class (Eq a) => Ord a where
 (<), (<=), (>=), (>) :: a -> a -> Bool
 max, min :: a -> a -> a

class (Eq a, Show a) => Num a where
 (+), (-), (*) :: a -> a -> a
 negate :: a -> a
 abs, signum :: a -> a
 fromInteger :: Integer -> a

class (Num a, Ord a) => Real a where
 toRational :: a -> Rational

class (Real a, Enum a) => Integral a where
 quot, rem :: a -> a -> a
 div, mod :: a -> a -> a
 toInteger :: a -> Integer

class (Num a) => Fractional a where
 (/) :: a -> a -> a
 fromRational :: Rational -> a

class (Fractional a) => Floating a where
 exp, log, sqrt :: a -> a
 sin, cos, tan :: a -> a

class (Real a, Fractional a) => RealFrac a where
 truncate, round :: (Integral b) => a -> b
 ceiling, floor :: (Integral b) => a -> b

-- numerical functions

even, odd :: (Integral a) => a -> Bool
even n = n `rem` 2 == 0
odd = not . even

-- monadic functions

sequence :: Monad m => [m a] -> m [a]
sequence = foldr mcons (return [])

 where mcons p q = do x <- p; xs <- q; return (x:xs)

sequence_ :: Monad m => [m a] -> m ()
sequence_ xs = do sequence xs; return ()

--
-- functions on functions

id :: a -> a
id x = x

const :: a -> b -> a
const x _ = x

(.) :: (b -> c) -> (a -> b) -> a -> c
f . g = \x -> f (g x)

flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x

($) :: (a -> b) -> a -> b
f $ x = f x

-- functions on Bools

data Bool = False | True

(&&), (||) :: Bool -> Bool -> Bool
True && x = x
False && _ = False
True || _ = True
False || x = x
not :: Bool -> Bool
not True = False
not False = True

--
-- functions on Maybe
data Maybe a = Nothing | Just a

isJust :: Maybe a -> Bool
isJust (Just a) = True
isJust Nothing = False

isNothing :: Maybe a -> Bool
isNothing = not . isJust

fromJust :: Maybe a -> a
fromJust (Just a) = a

maybeToList :: Maybe a -> [a]
maybeToList Nothing = []
maybeToList (Just a) = [a]

listToMaybe :: [a] -> Maybe a
listToMaybe [] = Nothing
listToMaybe (a:_) = Just a

-- a hidden goodie

instance Monad [] where
 return x = [x]
 xs >>= f = concat (map f xs)

--
-- functions on pairs

fst :: (a, b) -> a
fst (x, y) = x

snd :: (a, b) -> b
snd (x, y) = y

curry :: ((a, b) -> c) -> a -> b -> c
curry f x y = f (x, y)

uncurry :: (a -> b -> c) -> (a, b) -> c
uncurry f p = f (fst p) (snd p)
--
-- functions on lists

map :: (a -> b) -> [a] -> [b]
map f xs = [f x | x <- xs]

(++) :: [a] -> [a] -> [a]
xs ++ ys = foldr (:) ys xs

filter :: (a -> Bool) -> [a] -> [a]
filter p xs = [x | x <- xs, p x]

concat :: [[a]] -> [a]
concat xss = foldr (++) [] xss

concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f = concat . map f

head, last :: [a] -> a
head (x:_) = x

last [x] = x
last (_:xs) = last xs

tail, init :: [a] -> [a]
tail (_:xs) = xs

init [x] = []
init (x:xs) = x : init xs

null :: [a] -> Bool
null [] = True
null (_:_) = False

length :: [a] -> Int
length [] = 0
length (_:l) = 1 + length l

(!!) :: [a] -> Int -> a
(x:_) !! 0 = x
(_:xs) !! n = xs !! (n-1)

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

repeat :: a -> [a]
repeat x = xs where xs = x:xs

replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)

cycle :: [a] -> [a]
cycle [] = error "Prelude.cycle: empty list"
cycle xs = xs' where xs' = xs++xs'

take, drop :: Int -> [a] -> [a]
take n _ | n <= 0 = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs

drop n xs | n <= 0 = xs
drop _ [] = []
drop n (_:xs) = drop (n-1) xs

splitAt :: Int -> [a] -> ([a],[a])
splitAt n xs = (take n xs, drop n xs)

takeWhile, dropWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)
 | p x = x : takeWhile p xs
 | otherwise = []

dropWhile p [] = []
dropWhile p xs@(x:xs')
 | p x = dropWhile p xs'
 | otherwise = xs

lines, words :: String -> [String]
-- lines "apa\nbepa\ncepa\n" == ["apa","bepa","cepa"]
-- words "apa bepa\n cepa" == ["apa","bepa","cepa"]

unlines, unwords :: [String] -> String
-- unlines ["apa","bepa","cepa"] == "apa\nbepa\ncepa"
-- unwords ["apa","bepa","cepa"] == "apa bepa cepa"

and, or :: [Bool] -> Bool
and = foldr (&&) True
or = foldr (||) False

any, all :: (a -> Bool) -> [a] -> Bool
any p = or . map p
all p = and . map p

elem, notElem :: (Eq a) => a -> [a] -> Bool
elem x = any (== x)
notElem x = all (/= x)

lookup :: (Eq a) => a -> [(a,b)] -> Maybe b
lookup key [] = Nothing
lookup key ((x,y):xys)
 | key == x = Just y
 | otherwise = lookup key xys

sum, product :: (Num a) => [a] -> a
sum = foldl (+) 0
product = foldl (*) 1

maximum, minimum :: (Ord a) => [a] -> a
maximum [] = error "Prelude.maximum: empty list"
maximum xs = foldl1 max xs

minimum [] = error "Prelude.minimum: empty list"
minimum xs = foldl1 min xs

zip :: [a] -> [b] -> [(a,b)]
zip = zipWith (,)

zipWith :: (a->b->c) -> [a]->[b]->[c]
zipWith z (a:as) (b:bs)
 = z a b : zipWith z as bs
zipWith _ _ _ = []

unzip :: [(a,b)] -> ([a],[b])
unzip = foldr (\(a,b) ~(as,bs) -> (a:as,b:bs)) ([],[])

nub :: (Eq a) => [a] -> [a]
nub [] = []
nub (x:xs) = x : nub [y | y <- xs, x /= y]

delete :: Eq a => a -> [a] -> [a]
delete y [] = []

delete y (x:xs) = if x == y then xs else x : delete y xs

(\\) :: Eq a => [a] -> [a]-> [a]
(\\) = foldl (flip delete)

union :: Eq a => [a] -> [a] -> [a]
union xs ys = xs ++ (ys \\ xs)

intersect :: Eq a => [a] -> [a]-> [a]
intersect xs ys = [x | x <- xs, x `elem` ys]

intersperse :: a -> [a] -> [a]
-- intersperse 0 [1,2,3,4] == [1,0,2,0,3,0,4]

transpose :: [[a]] -> [[a]]
-- transpose [[1,2,3],[4,5,6]] == [[1,4],[2,5],[3,6]]

partition :: (a -> Bool) -> [a] -> ([a],[a])
partition p xs = (filter p xs, filter (not . p) xs)

group :: Eq a => [a] -> [[a]]
-- group "aapaabbbeee" == ["aa","p","aa","bbb","eee"]

isPrefixOf, isSuffixOf :: Eq a => [a] -> [a] -> Bool
isPrefixOf [] _ = True
isPrefixOf _ [] = False
isPrefixOf (x:xs) (y:ys) = x == y && isPrefixOf xs ys

isSuffixOf x y = reverse x `isPrefixOf` reverse y

sort :: (Ord a) => [a] -> [a]
sort = foldr insert []

insert :: (Ord a) => a -> [a] -> [a]
insert x [] = [x]
insert x (y:xs) = if x <= y then x:y:xs else y:insert x xs

--
-- functions on Char

type String = [Char]

toUpper, toLower :: Char -> Char
-- toUpper 'a' == 'A'
-- toLower 'Z' == 'z'

digitToInt :: Char -> Int
-- digitToInt '8' == 8

intToDigit :: Int -> Char
-- intToDigit 3 == '3'

ord :: Char -> Int
chr :: Int -> Char

Lund University EDAF40: Functional Programming
Department of Computer Science 3rd June 2019, 14–19

Exam

1. Type derivation (1p)

Give the types of the following expressions:

zipWith map

map zipWith

map.zipWith

and explain their meaning.

2. Programming (1p)

Write a function

permutations :: [a] -> [[a]]

that given an arbitrary list with non-repeating elements would produce all
the permutations of this list. (A permutation of a list is a list containing
exactly the same elements, but possibly in different order.)

Examples:

Prelude> permutations []

[]

Prelude> permutations [1]

[[1]]

Prelude> permutations [1,2]

[[1,2],[2,1]]

Prelude> permutations [1,2,3]

[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

Note that the order of individual permutations in the above examples is
not important, just that they are to be found somewhere in the answer.

You may use the assumption that elements in the input list do not repeat.
For the repeating case the outcome may be arbitrary.

Actually, a solution neglecting this fact may be simpler.

3. List comprehension (1p)

Write, using list comprehension syntax, a single function definition (try
to avoid if, case and similar constructs) with signature

g :: [[Int]] -> [[Int]],

which, from a list of lists of Int, returns a list of the tails of those lists
using, as filtering condition, that the head of each [Int] must be odd.
Also, your function must not trigger an error when it meets an empty
[Int], but rather silently skip such an entry. Example:

1

Prelude> g [[1,2],[],[6,2,3],[3],[6,5,4,3],[6],[5,1,1]]

[[2],[],[1,1]]

Rewrite now this definition using map and filter instead of list compre-
hension.

4. Folding (1p)

What does the following function do?

okänd xs = foldr (++) [] (map (\y -> [y]) xs)

5. Pattern matching (1p)

Define the following function using pattern matching:

oneOf :: Bool -> Bool -> Bool -> Bool

oneOf a b c

| not (a or b) = c

| not (b or c) = a

| not (a or c) = b

| otherwise = False

6. Bind (1p)

The following function could have been part of your solution to Assignment
2:

eliminatem n [] g = Just g

eliminatem n (s:ss) g = eliminate n s g >>= eliminatem n ss

(a) (0,4p) Given that the type of g is Grid, write the signature for this
function. Assume the most generic type for eliminate.

(b) (0,2p) How would your answer look like if the first line were changed
to

eliminatem n [] g = [g]

(c) (0,4p) Would the second line be correct after this change? Answer
YES or NO, and motivate.

Good Luck!

2

	edaf40title
	prelfns
	edaf40_190603

