
EDAF40
examination

2.5 hp
28th May 2018

14:00 - 19:00

WRITE ONLY ON ONE SIDE OF THE PAPER - the exams will be scanned in and only the front/
odd pages will be read.

DO NOT WRITE WITH OTHER COLOUR THAN BLACK - coloured text may disappear during
scanning

PUT YOUR ID AND PAGE NUMBER ON EACH PAGE YOU SUBMIT - make sure that the amount
of pages is equal to the amount you note on the front information page

WRITE CLEARLY - if we cannot read you we cannot grade you.

PRELIMINARY AMOUNT OF POINTS: 6 (1+0.5+1+0.5+1+2)

{-A list of selected functions from the Haskell modules:
 Prelude
 Data.List
 Data.Maybe
 Data.Char -}
--
-- standard type classes
class Show a where
 show :: a -> String

class Eq a where
 (==), (/=) :: a -> a -> Bool

class (Eq a) => Ord a where
 (<), (<=), (>=), (>) :: a -> a -> Bool
 max, min :: a -> a -> a

class (Eq a, Show a) => Num a where
 (+), (-), (*) :: a -> a -> a
 negate :: a -> a
 abs, signum :: a -> a
 fromInteger :: Integer -> a

class (Num a, Ord a) => Real a where
 toRational :: a -> Rational

class (Real a, Enum a) => Integral a where
 quot, rem :: a -> a -> a
 div, mod :: a -> a -> a
 toInteger :: a -> Integer

class (Num a) => Fractional a where
 (/) :: a -> a -> a
 fromRational :: Rational -> a

class (Fractional a) => Floating a where
 exp, log, sqrt :: a -> a
 sin, cos, tan :: a -> a

class (Real a, Fractional a) => RealFrac a where
 truncate, round :: (Integral b) => a -> b
 ceiling, floor :: (Integral b) => a -> b

-- numerical functions

even, odd :: (Integral a) => a -> Bool
even n = n `rem` 2 == 0
odd = not . even

-- monadic functions

sequence :: Monad m => [m a] -> m [a]
sequence = foldr mcons (return [])

 where mcons p q = do x <- p; xs <- q; return (x:xs)

sequence_ :: Monad m => [m a] -> m ()
sequence_ xs = do sequence xs; return ()

--
-- functions on functions

id :: a -> a
id x = x

const :: a -> b -> a
const x _ = x

(.) :: (b -> c) -> (a -> b) -> a -> c
f . g = \x -> f (g x)

flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x

($) :: (a -> b) -> a -> b
f $ x = f x

-- functions on Bools

data Bool = False | True

(&&), (||) :: Bool -> Bool -> Bool
True && x = x
False && _ = False
True || _ = True
False || x = x
not :: Bool -> Bool
not True = False
not False = True

--
-- functions on Maybe
data Maybe a = Nothing | Just a

isJust :: Maybe a -> Bool
isJust (Just a) = True
isJust Nothing = False

isNothing :: Maybe a -> Bool
isNothing = not . isJust

fromJust :: Maybe a -> a
fromJust (Just a) = a

maybeToList :: Maybe a -> [a]
maybeToList Nothing = []
maybeToList (Just a) = [a]

listToMaybe :: [a] -> Maybe a
listToMaybe [] = Nothing
listToMaybe (a:_) = Just a

-- a hidden goodie

instance Monad [] where
 return x = [x]
 xs >>= f = concat (map f xs)

--
-- functions on pairs

fst :: (a, b) -> a
fst (x, y) = x

snd :: (a, b) -> b
snd (x, y) = y

curry :: ((a, b) -> c) -> a -> b -> c
curry f x y = f (x, y)

uncurry :: (a -> b -> c) -> (a, b) -> c
uncurry f p = f (fst p) (snd p)
--
-- functions on lists

map :: (a -> b) -> [a] -> [b]
map f xs = [f x | x <- xs]

(++) :: [a] -> [a] -> [a]
xs ++ ys = foldr (:) ys xs

filter :: (a -> Bool) -> [a] -> [a]
filter p xs = [x | x <- xs, p x]

concat :: [[a]] -> [a]
concat xss = foldr (++) [] xss

concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f = concat . map f

head, last :: [a] -> a
head (x:_) = x

last [x] = x
last (_:xs) = last xs

tail, init :: [a] -> [a]
tail (_:xs) = xs

init [x] = []
init (x:xs) = x : init xs

null :: [a] -> Bool
null [] = True
null (_:_) = False

length :: [a] -> Int
length [] = 0
length (_:l) = 1 + length l

(!!) :: [a] -> Int -> a
(x:_) !! 0 = x
(_:xs) !! n = xs !! (n-1)

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

repeat :: a -> [a]
repeat x = xs where xs = x:xs

replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)

cycle :: [a] -> [a]
cycle [] = error "Prelude.cycle: empty list"
cycle xs = xs' where xs' = xs++xs'

take, drop :: Int -> [a] -> [a]
take n _ | n <= 0 = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs

drop n xs | n <= 0 = xs
drop _ [] = []
drop n (_:xs) = drop (n-1) xs

splitAt :: Int -> [a] -> ([a],[a])
splitAt n xs = (take n xs, drop n xs)

takeWhile, dropWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)
 | p x = x : takeWhile p xs
 | otherwise = []

dropWhile p [] = []
dropWhile p xs@(x:xs')
 | p x = dropWhile p xs'
 | otherwise = xs

lines, words :: String -> [String]
-- lines "apa\nbepa\ncepa\n" == ["apa","bepa","cepa"]
-- words "apa bepa\n cepa" == ["apa","bepa","cepa"]

unlines, unwords :: [String] -> String
-- unlines ["apa","bepa","cepa"] == "apa\nbepa\ncepa"
-- unwords ["apa","bepa","cepa"] == "apa bepa cepa"

and, or :: [Bool] -> Bool
and = foldr (&&) True
or = foldr (||) False

any, all :: (a -> Bool) -> [a] -> Bool
any p = or . map p
all p = and . map p

elem, notElem :: (Eq a) => a -> [a] -> Bool
elem x = any (== x)
notElem x = all (/= x)

lookup :: (Eq a) => a -> [(a,b)] -> Maybe b
lookup key [] = Nothing
lookup key ((x,y):xys)
 | key == x = Just y
 | otherwise = lookup key xys

sum, product :: (Num a) => [a] -> a
sum = foldl (+) 0
product = foldl (*) 1

maximum, minimum :: (Ord a) => [a] -> a
maximum [] = error "Prelude.maximum: empty list"
maximum xs = foldl1 max xs

minimum [] = error "Prelude.minimum: empty list"
minimum xs = foldl1 min xs

zip :: [a] -> [b] -> [(a,b)]
zip = zipWith (,)

zipWith :: (a->b->c) -> [a]->[b]->[c]
zipWith z (a:as) (b:bs)
 = z a b : zipWith z as bs
zipWith _ _ _ = []

unzip :: [(a,b)] -> ([a],[b])
unzip = foldr (\(a,b) ~(as,bs) -> (a:as,b:bs)) ([],[])

nub :: (Eq a) => [a] -> [a]
nub [] = []
nub (x:xs) = x : nub [y | y <- xs, x /= y]

delete :: Eq a => a -> [a] -> [a]
delete y [] = []

delete y (x:xs) = if x == y then xs else x : delete y xs

(\\) :: Eq a => [a] -> [a]-> [a]
(\\) = foldl (flip delete)

union :: Eq a => [a] -> [a] -> [a]
union xs ys = xs ++ (ys \\ xs)

intersect :: Eq a => [a] -> [a]-> [a]
intersect xs ys = [x | x <- xs, x `elem` ys]

intersperse :: a -> [a] -> [a]
-- intersperse 0 [1,2,3,4] == [1,0,2,0,3,0,4]

transpose :: [[a]] -> [[a]]
-- transpose [[1,2,3],[4,5,6]] == [[1,4],[2,5],[3,6]]

partition :: (a -> Bool) -> [a] -> ([a],[a])
partition p xs = (filter p xs, filter (not . p) xs)

group :: Eq a => [a] -> [[a]]
-- group "aapaabbbeee" == ["aa","p","aa","bbb","eee"]

isPrefixOf, isSuffixOf :: Eq a => [a] -> [a] -> Bool
isPrefixOf [] _ = True
isPrefixOf _ [] = False
isPrefixOf (x:xs) (y:ys) = x == y && isPrefixOf xs ys

isSuffixOf x y = reverse x `isPrefixOf` reverse y

sort :: (Ord a) => [a] -> [a]
sort = foldr insert []

insert :: (Ord a) => a -> [a] -> [a]
insert x [] = [x]
insert x (y:xs) = if x <= y then x:y:xs else y:insert x xs

--
-- functions on Char

type String = [Char]

toUpper, toLower :: Char -> Char
-- toUpper 'a' == 'A'
-- toLower 'Z' == 'z'

digitToInt :: Char -> Int
-- digitToInt '8' == 8

intToDigit :: Int -> Char
-- intToDigit 3 == '3'

ord :: Char -> Int
chr :: Int -> Char

Lund University EDAF40: Functional Programming
Department of Computer Science 28th May 2018, 14–19

Exam

1. Point-free notation (1p)

Rewrite the following two definitions into a point-free form (i.e., f = ...,
g = ...), using neither lambda-expressions nor list comprehensions nor
enumeration nor where clause nor let clause:

f x y = (3 - y) / x

g x y = [x z | z <- [1,3..y]]

2. Type derivation (0.5p)

Which type has the function g defined as

g xs = [f x | x <- xs, x > 3]

where f n = replicate n ’+’ ?

3. Type declarations (1p)

Explain the difference between type, newtype and data type declarations
in Haskell.

4. Programming (0.5p)

Give an example of a function with type

(a -> b , [a]) -> [b]

5. List comprehension (1p)

A Pythagorean triad is a triple of integers (a,b,c) such that

a^2 + b^2 == c^2

Define a function of n that will find all Pythagorean triads with a<=b<=c<=n.
Express it using list comprehension.

1

6. Programming (2p)

A proposition is a boolean formula of one of the following forms:

• a variable name (a string)

• p ∧ q (and)

• p ∨ q (or)

• ¬p (not)

where p and q are propositions (note recursiveness). For example, p ∨ ¬p
is a proposition.

(a) Design a data type Proposition to represent propositions.

(b) Define a function

vars :: Proposition -> [String]

which returns a list of the variables in a proposition. Make sure each
variable appears only once in the list you return. E.g., for (your
representation of) p ∨ ¬p it should return p.

(c) Suppose you are given a list of variable names, and their values of type
Bool, for example, [("p",True),("q",False)]. Define a function

truthValue :: Proposition -> [(String,Bool)] -> Bool

which determines whether the proposition is true when the variables
have the values given as second argument. E.g., for (your represen-
tation of) p ∨ ¬p and [("p", True)] it should return True.

(d) Define a function

tautology :: Proposition -> Bool

which returns true if the proposition holds for all values of the vari-
ables appearing in it. E.g., for (your representation of) p ∨ ¬p it
should return True.

Good Luck!

2

	edaf40title
	prelfns
	edaf40_180528

