
EDAF40
2nd June 2017

14:00 - 19:00

WRITE ONLY ON ONE SIDE OF THE PAPER - the exams will be scanned in and only the front/
odd pages will be read.

DO NOT WRITE WITH OTHER COLOUR THAN BLACK - coloured text may disappear during
scanning

PUT YOUR ID AND PAGE NUMBER ON EACH PAGE YOU SUBMIT - make sure that the amount
of pages is equal to the amount you note on the front information page

WRITE CLEARLY - if we cannot read you we cannot grade you.

PRELIMINARY AMOUNT OF POINTS: 6 (1,5 + 1 + 1 + 1 + 1,5)

{-A list of selected functions from the Haskell modules:
 Prelude
 Data.List
 Data.Maybe
 Data.Char -}
--
-- standard type classes
class Show a where
 show :: a -> String

class Eq a where
 (==), (/=) :: a -> a -> Bool

class (Eq a) => Ord a where
 (<), (<=), (>=), (>) :: a -> a -> Bool
 max, min :: a -> a -> a

class (Eq a, Show a) => Num a where
 (+), (-), (*) :: a -> a -> a
 negate :: a -> a
 abs, signum :: a -> a
 fromInteger :: Integer -> a

class (Num a, Ord a) => Real a where
 toRational :: a -> Rational

class (Real a, Enum a) => Integral a where
 quot, rem :: a -> a -> a
 div, mod :: a -> a -> a
 toInteger :: a -> Integer

class (Num a) => Fractional a where
 (/) :: a -> a -> a
 fromRational :: Rational -> a

class (Fractional a) => Floating a where
 exp, log, sqrt :: a -> a
 sin, cos, tan :: a -> a

class (Real a, Fractional a) => RealFrac a where
 truncate, round :: (Integral b) => a -> b
 ceiling, floor :: (Integral b) => a -> b

-- numerical functions

even, odd :: (Integral a) => a -> Bool
even n = n `rem` 2 == 0
odd = not . even

-- monadic functions

sequence :: Monad m => [m a] -> m [a]
sequence = foldr mcons (return [])

 where mcons p q = do x <- p; xs <- q; return (x:xs)

sequence_ :: Monad m => [m a] -> m ()
sequence_ xs = do sequence xs; return ()

--
-- functions on functions

id :: a -> a
id x = x

const :: a -> b -> a
const x _ = x

(.) :: (b -> c) -> (a -> b) -> a -> c
f . g = \x -> f (g x)

flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x

($) :: (a -> b) -> a -> b
f $ x = f x

-- functions on Bools

data Bool = False | True

(&&), (||) :: Bool -> Bool -> Bool
True && x = x
False && _ = False
True || _ = True
False || x = x
not :: Bool -> Bool
not True = False
not False = True

--
-- functions on Maybe
data Maybe a = Nothing | Just a

isJust :: Maybe a -> Bool
isJust (Just a) = True
isJust Nothing = False

isNothing :: Maybe a -> Bool
isNothing = not . isJust

fromJust :: Maybe a -> a
fromJust (Just a) = a

maybeToList :: Maybe a -> [a]
maybeToList Nothing = []
maybeToList (Just a) = [a]

listToMaybe :: [a] -> Maybe a
listToMaybe [] = Nothing
listToMaybe (a:_) = Just a

-- a hidden goodie

instance Monad [] where
 return x = [x]
 xs >>= f = concat (map f xs)

--
-- functions on pairs

fst :: (a, b) -> a
fst (x, y) = x

snd :: (a, b) -> b
snd (x, y) = y

curry :: ((a, b) -> c) -> a -> b -> c
curry f x y = f (x, y)

uncurry :: (a -> b -> c) -> (a, b) -> c
uncurry f p = f (fst p) (snd p)
--
-- functions on lists

map :: (a -> b) -> [a] -> [b]
map f xs = [f x | x <- xs]

(++) :: [a] -> [a] -> [a]
xs ++ ys = foldr (:) ys xs

filter :: (a -> Bool) -> [a] -> [a]
filter p xs = [x | x <- xs, p x]

concat :: [[a]] -> [a]
concat xss = foldr (++) [] xss

concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f = concat . map f

head, last :: [a] -> a
head (x:_) = x

last [x] = x
last (_:xs) = last xs

tail, init :: [a] -> [a]
tail (_:xs) = xs

init [x] = []
init (x:xs) = x : init xs

null :: [a] -> Bool
null [] = True
null (_:_) = False

length :: [a] -> Int
length [] = 0
length (_:l) = 1 + length l

(!!) :: [a] -> Int -> a
(x:_) !! 0 = x
(_:xs) !! n = xs !! (n-1)

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

repeat :: a -> [a]
repeat x = xs where xs = x:xs

replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)

cycle :: [a] -> [a]
cycle [] = error "Prelude.cycle: empty list"
cycle xs = xs' where xs' = xs++xs'

take, drop :: Int -> [a] -> [a]
take n _ | n <= 0 = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs

drop n xs | n <= 0 = xs
drop _ [] = []
drop n (_:xs) = drop (n-1) xs

splitAt :: Int -> [a] -> ([a],[a])
splitAt n xs = (take n xs, drop n xs)

takeWhile, dropWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)
 | p x = x : takeWhile p xs
 | otherwise = []

dropWhile p [] = []
dropWhile p xs@(x:xs')
 | p x = dropWhile p xs'
 | otherwise = xs

lines, words :: String -> [String]
-- lines "apa\nbepa\ncepa\n" == ["apa","bepa","cepa"]
-- words "apa bepa\n cepa" == ["apa","bepa","cepa"]

unlines, unwords :: [String] -> String
-- unlines ["apa","bepa","cepa"] == "apa\nbepa\ncepa"
-- unwords ["apa","bepa","cepa"] == "apa bepa cepa"

and, or :: [Bool] -> Bool
and = foldr (&&) True
or = foldr (||) False

any, all :: (a -> Bool) -> [a] -> Bool
any p = or . map p
all p = and . map p

elem, notElem :: (Eq a) => a -> [a] -> Bool
elem x = any (== x)
notElem x = all (/= x)

lookup :: (Eq a) => a -> [(a,b)] -> Maybe b
lookup key [] = Nothing
lookup key ((x,y):xys)
 | key == x = Just y
 | otherwise = lookup key xys

sum, product :: (Num a) => [a] -> a
sum = foldl (+) 0
product = foldl (*) 1

maximum, minimum :: (Ord a) => [a] -> a
maximum [] = error "Prelude.maximum: empty list"
maximum xs = foldl1 max xs

minimum [] = error "Prelude.minimum: empty list"
minimum xs = foldl1 min xs

zip :: [a] -> [b] -> [(a,b)]
zip = zipWith (,)

zipWith :: (a->b->c) -> [a]->[b]->[c]
zipWith z (a:as) (b:bs)
 = z a b : zipWith z as bs
zipWith _ _ _ = []

unzip :: [(a,b)] -> ([a],[b])
unzip = foldr (\(a,b) ~(as,bs) -> (a:as,b:bs)) ([],[])

nub :: (Eq a) => [a] -> [a]
nub [] = []
nub (x:xs) = x : nub [y | y <- xs, x /= y]

delete :: Eq a => a -> [a] -> [a]
delete y [] = []

delete y (x:xs) = if x == y then xs else x : delete y xs

(\\) :: Eq a => [a] -> [a]-> [a]
(\\) = foldl (flip delete)

union :: Eq a => [a] -> [a] -> [a]
union xs ys = xs ++ (ys \\ xs)

intersect :: Eq a => [a] -> [a]-> [a]
intersect xs ys = [x | x <- xs, x `elem` ys]

intersperse :: a -> [a] -> [a]
-- intersperse 0 [1,2,3,4] == [1,0,2,0,3,0,4]

transpose :: [[a]] -> [[a]]
-- transpose [[1,2,3],[4,5,6]] == [[1,4],[2,5],[3,6]]

partition :: (a -> Bool) -> [a] -> ([a],[a])
partition p xs = (filter p xs, filter (not . p) xs)

group :: Eq a => [a] -> [[a]]
-- group "aapaabbbeee" == ["aa","p","aa","bbb","eee"]

isPrefixOf, isSuffixOf :: Eq a => [a] -> [a] -> Bool
isPrefixOf [] _ = True
isPrefixOf _ [] = False
isPrefixOf (x:xs) (y:ys) = x == y && isPrefixOf xs ys

isSuffixOf x y = reverse x `isPrefixOf` reverse y

sort :: (Ord a) => [a] -> [a]
sort = foldr insert []

insert :: (Ord a) => a -> [a] -> [a]
insert x [] = [x]
insert x (y:xs) = if x <= y then x:y:xs else y:insert x xs

--
-- functions on Char

type String = [Char]

toUpper, toLower :: Char -> Char
-- toUpper 'a' == 'A'
-- toLower 'Z' == 'z'

digitToInt :: Char -> Int
-- digitToInt '8' == 8

intToDigit :: Int -> Char
-- intToDigit 3 == '3'

ord :: Char -> Int
chr :: Int -> Char

Lund University EDAF40: Functional Programming
Department of Computer Science 2nd June 2017, 14–19

Exam

1. Type derivation

(a) Assume that the type of reduce is

reduce :: a -> a

Find the type of

prepare = reduce . words . map toLower . filter

(not . flip

elem ".,:;*!#%&|")

(b) Given that

map2 :: (a -> b, c -> d) -> (a, c) -> (b, d)

find the destination type b of the following function:

rulesCompile :: [(String, [String])] -> b

rulesCompile = (map . map2) (words . map toLower, map words)

(c) Given that

transformationApply :: Eq a => a -> ([a] -> [a]) -> [a] -> ([a], [a])

-> Maybe [a]

orElse :: Maybe a -> Maybe a -> Maybe a

find the type of

foldr1 orElse (map (transformationApply wildcard f x) pats)

2. Let k be defined as follows:

k = 0 : 1 : zipWith (+) k (tail k)

(a) What is the type of k?

(b) What are the first ten elements of k?

3. Define a function altMap

altMap :: (a -> b) -> (a -> b) -> [a] -> [b]

that alternately applies its two functional arguments to successive elements
of a list, in turn about order. For example:

altMap (+10) (+100) [0, 1, 2, 3, 4] = [10, 101, 12, 103, 14]

Using if in your solution will cause a substantial deduction of available
points.

1

4. Consider the following two versions of similarity score computations. The
difference is in the expression defining value for simEntry i j .

(a) Which of the versions is much faster than the other?

(b) Why?

Answering (a) but not (b) does not give much credit. Wrong answer is
worth less than “I don’t know”.

VERSION 1:

similScore :: String -> String -> Int

similScore xs ys = simScore (length xs) (length ys)

where

simScore i j = simTable!!i!!j

simTable = [[simEntry i j | j<-[0..]] | i<-[0..]]

simEntry :: Int -> Int -> Int

simEntry 0 0 = 0

simEntry i 0 = (i * scoreSpace)

simEntry 0 j = (scoreSpace * j)

simEntry i j = maximum [((simScore (i-1) (j-1)) + (score x y)),

((simScore (i-1) j) + (score x ’-’)),

((simScore i (j-1)) + (score ’-’ y))]

where

x = xs!!(i-1)

y = ys!!(j-1)

VERSION 2:

similScore :: String -> String -> Int

similScore xs ys = simScore (length xs) (length ys)

where

simScore i j = simTable!!i!!j

simTable = [[simEntry i j | j<-[0..]] | i<-[0..]]

simEntry :: Int -> Int -> Int

simEntry 0 0 = 0

simEntry i 0 = (i * scoreSpace)

simEntry 0 j = (scoreSpace * j)

simEntry i j = maximum [((simEntry (i-1) (j-1)) + (score x y)),

((simEntry (i-1) j) + (score x ’-’)),

((simEntry i (j-1)) + (score ’-’ y))]

where

x = xs!!(i-1)

y = ys!!(j-1)

2

5. Define a type CircList (or CL for short, if you prefer) defining a circular
list of arbitrary length (and holding arbitrary elements). Our examples
below will use elements of type Int. You have to make sure that the
current position is well-defined and accessible for the operations defined
for this type. The picture below illustrates the concept and its possible
representation using a standard list (with the assumption that the first
element defines the current position and that the last position in the list
is glued to the first one in a circular fashion):

1

2

3
4

5
current position [2,3,4,5,1]

Please note that it is your task to define the appropriate type constructor!
Define then for this type the following functions:

perimeter :: CircList a -> Int

currentelem :: CircList a -> Maybe a

nextelem :: CircList a -> Maybe a

previouselem :: CircList a -> Maybe a

insert :: a -> CircList a -> CircList a

delete :: Int -> CircList a -> CircList a

takefromCL :: Int -> CircList a -> [a]

returning the number of elements (positions) in the list; returning the
current element in the list; returning the next element in the list; returning
the previous element in the list; inserting an element between the current
and the previous element in the list but keeping the current element intact;
deleting n first elements from the list; and taking n first elements of the
circular list (possibly circling if necessary), respectively. You may, and are
actually encouraged to, define any helper functions you deem appropriate.
Examples of the intended functionality:

perimeter (CircList [1, 2, 3, 4, 5]) = 5

currentelem (CircList [1, 2, 3, 4, 5]) = Just 1

currentelem (CircList []) = Nothing

nextelem (CircList [1, 2, 3, 4, 5]) = Just 2

nextelem (CircList [1]) = Just 1

previouselem (CircList [1, 2, 3, 4, 5]) = Just 5

insert 6 (CircList [1, 2, 3, 4, 5]) = CircList [1, 2, 3, 4, 5, 6]

delete 2 (CircList [1, 2, 3, 4, 5]) = CircList [3, 4, 5]

takefromCL 4 (CircList [1, 2, 3]) = [1, 2, 3, 1]

Finally, define a predicate

equalCL :: CircList a -> CircList a -> Bool

3

yielding True if and only if both lists contain the same elements in the
same order, but not necessarily with the same current position. E.g., if we
used the standard list representation for circular lists (assuming the end
is glued to the beginning) then

equalCL (CircList [1, 2, 3, 4, 5]) (CircList [3, 4, 5, 1, 2]) = True

equalCL (CircList [1, 2, 3, 4, 5]) (CircList [3, 4, 5, 2, 1]) = False

equalCL (CircList [1, 2, 3, 4, 5]) (CircList [3, 4, 5, 1, 2, 3]) = False

equalCL (CircList [1, 2, 3]) (CircList [2, 3, 1, 2, 3, 1]) = False

Good Luck!

4

	edaf40title
	prelfns
	edaf40_170602

