
Lund University EDAN40: Functional Programming
Department of Computer Science 13th January 2015, 14–19

Exam

1. Rewrite the following definitions into a point-free form (i.e., f = ..,
g = ..), using neither lambda-expressions nor list comprehensions nor
enumeration nor where clause nor let clause:

• f x y = (3 + x) / y

• g x y = [y z | z <- [1..x]]

2. Give the types for the following operator expressions

• The Haskell smiley: (8-)

• Haskell goggles: (+0).(0+)

• Haskell wheels: (.)(.)

• A Haskell treasure: (($)$($))

• Haskell swearing: ([]>>=)(_->[(>=)])

3. Explain the concept of a spark in Haskell. How does it relate to the
following three functions

seq, pseq, par :: a -> b -> b

Explain what they do.

4. Define a type CircList (or CL for short, if you prefer) defining a circu-
lar list of arbitrary length (and, say, holding integer elements). You have
to make sure that the current position is well-defined and accessible for
the operations defined for this type. The picture below illustrates the
concept and its possible representation using a standard list (with the
assumption that the first element defines the current position and that
the last position in the list is glued to the first one in a circular fashion):

1

2

3
4

5
current position [2,3,4,5,1]

Please note that it is your task to define the appropriate type constructor!
Define then for this type the following functions:

1

perimeter :: CircList -> Int

currentelem :: CircList -> Maybe Int

nextelem :: CircList -> Maybe Int

previouselem :: CircList -> Maybe Int

insert :: CircList Int -> CircList

takefromCL :: Int CircList -> [Int]

returning the number of elements in the list, returning the current element
in the list, returning the next element in the list, returning the previous
element in the list, inserting an element between the current and the
previous element in the list, and taking n first elements of the circular
list, respectively. You may, and are actually encouraged to, define any
helper functions you deem appropriate.

Finally, define a predicate

equalcirclist :: CircList CircList -> Bool

yielding True if and only if both list contain the same elements in the
same order, but not necessarily with the same current position. E.g., if we
used the standard list representation for circular lists (assuming the end
is glued to the beginning) then

equalcirclist (CircList [1, 2, 3, 4, 5]) (CircList [3, 4, 5, 1, 2]) = True

equalcirclist (CircList [1, 2, 3, 4, 5]) (CircList [3, 4, 5, 2, 1]) = False

equalcirclist (CircList [1, 2, 3, 4, 5]) (CircList [3, 4, 5, 1, 2, 3]) = False

5. What is the type of the following function:

g x y = do

a <- x

b <- y

return (a,b)

What is the value of:

g (Just 5) Nothing

g [1, 2, 3] [5, 6, 7]

g (Just "I am") (Just "Charlie")

6. Define the standard function

filter :: (a -> Bool) -> [a] -> [a]

using foldr, so that your definition looks as follows:

filter p = foldr ...

Good Luck!

2

