Lund University EDAN40: Functional Programming
Department of Computer Science 16th December 2013, 8.00-13.00

1.

Exam

e Write a definition of scanr, first using recursion, and then using
foldr.

e Do the same for scanl first using recursion then foldl.
Provide type signature for both.

A scan function accumulates a value like a fold, but returns a list of all
intermediate values. E.g.

scanr (+) 0 [1,2,3] =
scanl (+) 0 [1,2,3] =

| |
Ll
[e2Ne}
= o
w w
O
—

e Use a fold (which one?) to define
reverse :: [a] -> [a]

which returns a list with the elements in reverse order.

Explain the subclass relation between type classes in Haskell. Give an
example as well.

Given the following definitions:
type ChurchNatural a = (a -> a) -> (a -> a)

zeroC, oneC, twoC :: ChurchNatural a
zeroC f = id -- zeroC = const id
oneC f =f -- oneC = id

twoC f f.f

succC n f f.(n f)

threeC
fourC

succC twoC
succC threeC

plusCx y f = (x £).(y £)
show that

twoC ‘plusC‘ twoC = fourC

4. Given the following function:
£ y = do
<- x
b <-y
return (a*b)

X
a

What is the type of £7

What is the value of £ [1,2,3] [2,4,8] ?
What is the value of £ (Just 5) Nothing ?

Is the expression fmap (+2) (Just 5) correct?
What is the type of expression return 57

5. Explain the differences in behaviour of the following three functions:

parSort2 (x:xs) = grtr ‘par‘ (lesser ‘par‘ (lesser ++ x:grtr))
where lesser = parSort2 [y | y <- xs, y < x]
grtr parSort2 [y | y <- xs, y >= x]
parSort2 _ 1

parSort3 (x:xs) = grtr ‘par‘ (lesser ‘pseq‘ (lesser ++ x:grtr))
where lesser = parSort3 [y | y <- xs, y < x]
grtr = parSort3 [y | y <- xs, y >= x]
1

parSort3 _

parSort4 (x:xs) = force grtr ‘par‘ (force lesser ‘pseq‘ (lesser ++ x:grtr))
where lesser = parSort4 [y | y <- xs, y < x]
grtr parSortd [y | y <- xs, y >= x]
parSort4d _ =[]

6. In Haskore music is represented by the data type

data Music = Note Pitch Dur [NoteAttribute] -- a note \ atomic
| Rest Dur -- a rest / objects
| Music :+: Music -- sequential composition
| Music :=: Music -- parallel composition

|
There is also a function which combines notes to lines of music:
line = foldr (:+:) (Rest 0) :: [Music] -> Music
as well as the reverse function
lineToList :: Music -> [Music]

lineToList n@(Rest 0) = []
lineTolList (n :+: ns) = n : lineToList ns

(a) Let m1 och m2 be defined as

mil
m2

[Note (C,5) dur [] :+: Note (D,5) dur [], Note (E,5) dur []]
[Note (C,5) dur [], Note (D,5) dur [], Note (E,5) dur []]

Explain how the values of expressions 1ine ml and line m2 differ.

(b) Define a function 1ine2 so that 1ine2 m1 and line2 m2 is the same
as line m2.

(c) Define a function 1ineToList2 so that lineToList2 (line ml1) and
lineToList2 (line m2) is the same as lineToList (line m2).

Good Luck! Lycka till!

where mcons p q = do X <- p; XS <- q; return (x:xs)
{-A list of selected functions from the Haskell modules:

Prelude sequence_ :: Monad m => [m al -> m ()
Data.List sequence_ xs = do sequence xs; return ()
Data.Maybe

Data.Char -}

—— functions on functions
—— standard type classes

class Show a where id ra—>a
show :: a —> String id x =X
class Eq a where const ita—>b->a
==), (/=) i a —> a —> Bool const x _ =X
class (Eq a) => Ord a where (.) it (b—>¢) == (a->b) =>a—->c
(<), (<=), (>=), (>) :: a -> a —> Bool f.g =\x = f (g x)
max, min rra-—>a—>a
flip it (a—>b-—>c) >b->a-—>c
class (Eq a, Show a) => Num a where flip f xy = fyx
(+), (=), (%) ita—>a-—>a
negate it a—>a ($) (a —>b) =>a->0b
abs, signum it a —> a f ¢ x = f x
fromInteger :: Integer —> a
class (Num a, Ord a) => Real a where —— functions on Bools
toRational 1 a —> Rational

data Bool = False | True
class (Real a, Enum a) => Integral a where

quot, rem ita—>a-—>a (&&), (|]) :: Bool —> Bool —> Bool
div, mod rta—>a-—>a True && x = X
toInteger 11 a —> Integer False & _ = False
True || _ = True
class (Num a) => Fractional a where False || x = x
(/) ita—>a->a not 11 Bool —> Bool
fromRational :: Rational —> a not True = False
not False = True
class (Fractional a) => Floating a where
exp, log, sqrt it a —> a
sin, cos, tan it a—> a —— functions on Maybe

data Maybe a = Nothing | Just a
class (Real a, Fractional a) => RealFrac a where

truncate, round it (Integral b) =>a —> b isJust 11 Maybe a —> Bool
ceiling, floor it (Integral b) =>a —> b isJust (Just a) = True
isJust Nothing = False
—— numerical functions isNothing 11 Maybe a —> Bool
isNothing = not . isJust
even, odd it (Integral a) => a —> Bool
even n =n ‘rem 2 == fromJust i: Maybe a —> a
odd = not . even fromJust (Just a) = a
—-- monadic functions maybeToList 11 Maybe a —> [a]
maybeToList Nothing =
sequence i Monad m => [m a] —> m [a] maybeToList (Just a) = [al

sequence = foldr mcons (return [])

listToMaybe i1 [a]l —> Maybe a null i1 [al] —> Bool

listToMaybe [] = Nothing null [] = True
listToMaybe (a:_) = Just a null (_:_) = False
length i [a]l = Int
—-— a hidden goodie length [] =0
length (_:1) =1 + length 1
instance Monad [] where
return x = [x] (1) :: [al = Int —> a
xs >>= f = concat (map f xs) (x:_) 're = X
(_ixs) !'!'n =xs !! (n-1)
—— functions on pairs foldr it (a—>b-—>b) >b—>1[al >b
foldr f z [] =z
fst i (a, b) > a foldr f z (xixs) = f x (foldr f z xs)
fst (x, y) =x
foldl it (a—>b-—>a) =>a—>[bl >a
snd it (a, b) > b foldl f z [] =2z
snd (x, y) =y foldl f z (x:xs) = foldl f (f z x) xs
curry it ((a, b) =>¢c) >a—->b -—>c iterate i (a —>a) > a — [a]
curry f xy =f (x, y) iterate f x = x : iterate f (f x)
uncurry it (@a—=>b->c) > (a, b) =>c repeat it a —> [al
uncurry f p = f (fst p) (snd p) repeat x = XS where xs = X:iXxs
—— functions on lists replicate i1 Int —> a —> [a]
replicate n x = take n (repeat x)
map it (@ —=>b) —=> [a] —> [b]
map f xs = [f x | x <= xs 1 cycle 1t [al — [al
cycle [] = error "Prelude.cycle: empty list"
(++) 11 [a]l — [a] — [al cycle xs = xs' where xs' = xs++xs'
XS ++ ys = foldr (:) ys xs
take, drop i1 Int — [a]l — [a]
filter i1 (a => Bool) —> [a]l —> [al take n _ | n<=10 =[]
filter p xs =[x | x<=xs, px] take _ =[]
take n (x:xs) = x : take (n-1) xs
concat 11 [[all — [al
concat xss = foldr (++) [] xss dropn xs | n<=0 = Xxs
drop _ [I =[]
concatMap :: (a —> [b]) —> [a]l —> [b] drop n (_:xs) = drop (n-1) xs
concatMap f = concat . map f
splitAt i1 Int — [a]l — ([al,[al)
head, last it [a]l —> a splitAt n xs = (take n xs, drop n xs)
head (x:_) = X
takeWhile, dropWhile :: (a -> Bool) —> [a] —> [a]
last [x] =X takeWhile p [] =[]
last (_:xs) = last xs takeWhile p (x:xs)
| p x = x : takeWhile p xs
tail, init i1 [a]l — [al | otherwise =[]
tail (_:xs) = XS
dropwhile p [] =[]
init [x] =[] dropWhile p xs@(x:xs')
init (x:xs) = x : init xs | p x = dropWhile p xs'

| otherwise XS

lines, words

1 String —> [String]

—— lines "apa\nbepa\ncepa\n" == ["apa","bepa",'"cepa"]
—-— words "apa bepa\n cepa" == ["apa","bepa","cepa"l
unlines, unwords [String] —> String

—— unlines ["apa" "bepa",'"cepa"] == "apa\nbepa\ncepa"
—— unwords ["apa","bepa",'cepa"] == "apa bepa cepa"
and, or [Bool]l —> Bool

and = foldr (&&) True

or = foldr (|]|) False

any, all (a —> Bool) —> [a] —> Bool
any p = or . map p

all p = and . map p

elem, notElem (Eq a) => a —> [a] —> Bool

elem x = any (== x)

notElem x = all (/= x)

lookup (Eq a) => a —> [(a,b)] —> Maybe b

lookup key [

| key == x
| otherwise

sum, product
sum

product
maximum, minimum ::
maximum []

maximum xs

minimum []
minimum xs

zip
zip

zipWith

zipWith z (a:as)

zipWith _

unzip
unzip

nub
nub []
nub (x:xs)

delete
delete y []

1

;.Nothing
lookup key ((x,y):xys)

Just y
lookup key xys

(Num a) => [a] —> a
foldl (+) @
foldl (x) 1

(Ord a) => [a] —> a
error "Prelude.maximum: empty list"
foldll max xs

error "Prelude.minimum: empty list"
foldll min xs

[al —> [b] —> [(a,b)]
zipwith (,)

(a—>b—>c) -> [al->[b]->I[c]

z ab : zipWith z as bs
[(a,b)] — ([al,[bl)

foldr (\(a,b) ~(as,bs) —> (a:as,b:bs))
(Eq a) => [a] —> [al

(1
xitnub [y |y<-xs, x/=y]

11 Eq a => a —> [a] - [a]

[l

(11, 11)

i

delete y (x:ixs)

(\\) :
(\\) = f
union

union xs ys = X
intersect

intersect xs ys

intersperse
—— intersperse 0 [1,

transpose
—— transpose [[1,2,3

partition
partition p xs

group
—— group "aapaabbbee

isPrefix0f, isSuffix
isPrefix0f [] _

isPrefix0f _ []
isPrefix0f (x:xs) (

isSuffix0f x y

sort
sort

insert
insert x []
insert x (y:xs)

y:ys)

f x ==y then xs else x : delete y xs

: Eq a => [a]l —> [al—> [a]

oldl (flip delete)

: Eq a = [a] —> [a] — [al

s ++ (ys \\ xs)

HH Eq a => [a] —> [a]l—> [a]
X | x <= xs, x ‘elem’ ys]

a —> [a] — [al
2,3,4] == [1,0,2,0,3,0,4]

i [[a]] —-> [[all
1,[4,5,611 == [I[1,4],I12,5],[3,6]]

(a = Bool) —> [a] — ([al, [al)
= (filter p xs, filter (not . p) xs)

: Eq a => [a] —> [[all

eII == ["aa",“p"'"aa"'“bbb","eee"]
0f :: Eq a => [al —> [al —> Bool
= True
= False

=y && isPrefix0f xs ys

reverse x ~isPrefix0f" reverse y

(Ord a) => [a] —> [a]
foldr insert []

(Ord a) => a —> [a] —> [a]
[x]

if x <=y then x:y:xs else y:insert x xs

—— functions on Char

type String = [Char]

toUpper, tolLower

—— toUpper 'a' ==
—— tolLower 'Z' ==
digitToInt :
—— digitToInt '8' ==
intToDigit H
—— intToDigit 3 ==
ord

chr

: Char —> Char
Al
Iy
: Char —> Int
8
:: Int —> Char
13
:: Char —> Int
:: Int —> Char

	Exam131216
	prelfns.pdf

