Lund University EDAN40: Functional Programming
Department of Computer Science 17th December 2012, 8.00-13.00

Exam

1. Rewrite the following definitions into a point-free form, without using
lambda-expressions or list comprehensions or enumeration:
efxy=3+y/x
egxy=[yz | z< [1..x]]

2. Give the types of the following expressions:

(a) C.)(2)
(b) C:(.))
(c) (C.):)
(d) (¢:):)
(e) (.)C)

3. Explain the concept of a spark in Haskell. How does it relate to the
following three functions

<]

)
)
)
)

seq, pseq, par :: a ->b ->b
Explain what do they do.

4. The class Functor defines a generalization of the function map:
fmap :: Functor £ => (a -=> b) > f a ->f b

Assuming that m is a monadic object, show how fmap f m can be im-
plemented with a do-expression. Rewrite then your do-expression using
bind.

5. Are the following two expressions:
[(x,y) | x <= [1..10000], x == 2000, y <- [1..100], odd y]
and
[(x,y) | x <= [1..10000], y <- [1..100], x == 2000, odd y]

equivalent? Motivate your answer.

6. Define a type Tree where all nodes of a tree, including its leaves, can keep
a string value; then define a predicate

subTree t1 t2

returning True when tree t1 is a subtree of tree t2.

A list of selected functions from the Haskell modules:
Prelude
Data.list
Data.Maybe
Data.Char

-- standard type classes
class Show a where
show :: a -> String

class Eq a where
==, (/= :: a ->a -> Bool

class (Eq a) => Ord a where
AAU~ ﬁAHUv ﬁVva ﬁVu 1 a->a -> Bool
max, min a->a->a

class (Eq a, Show a) => Num a where

),), M rada->a->a
negate tra->a

abs, signum it a->a
fromInteger :: Integer -> a

class (Num a, Ord a) => Real a where
toRational :: a -> Rational

class (Real a, Enum a) => Integral a where
quot, rem ra->a->a
div, mod a->a->a
toInteger a -> Integer

class (Num a) => Fractional a where
(@) cra->a->a
fromRational :: Rational -> a

class (Fractional a) => Floating a where
exp, log, sqrt it a->a
sin, cos, tan it a->a

class (Real a, Fractional a) => RealFrac a where
truncate, round (Integral b) => a -> b
ceiling, floor (Integral b) => a -> b

-- numerical functions

even, odd :: (Integral a) => a -> Bool
even n =n ‘rem’ 2 ==0
odd = not . even

-- monadic functions

sequence :: Monad m => [m a] -> m [a]
sequence = foldr mcons (return [])

where mcons p q = do x <- p; Xs <- q; return (x:xs)

sequence_ i Monad m => [mal] ->m Q
sequence_ xs = do sequence xs; return

-- functions on functions

id ra->a

id x =X

const :ra->b ->a

const x _ =X

([@D) i (b->c) >Ca->b) >a ->c
f.g =\x -> f (g x)

flip 2 (@a->b->¢c)>b ->a->c
flip f xy=fyx

(€)) it (a->b) >a->b

f$x =f x

-- functions on Bools
data Bool = False | True

&&), (ClI1) :: Bool -> Bool -> Bool
True & & x = x

False & _ = False

True |l _ = True

False Il x = x

not :: Bool -> Bool
not True = False

not False = True

-- functions on Maybe
data Maybe a = Nothing | Just a

isJust : Maybe a -> Bool
isJust (Just a) = True

isJust Nothing = False

isNothing :: Maybe a -> Bool
isNothing = not . isJust
fromJust : Maybe a -> a
fromJust (Just a) =a

maybeTolList :: Maybe a -> [a]

maybeToList Nothing = []
maybeToList (Just a) = [a]

listToMaybe :: [a] -> Maybe a
listToMaybe [] = Nothing
listToMaybe (a:_) = Just a

-- a hidden goodie

instance Monad [] where
return x = [x]
xs >>= f = concat (map f xs)

-- functions on pairs

fst :: (a, b) ->a

fst (x, y) =x

snd :: (a, b) > b

snd (x, ¥y) =y

curry 0 ((a, b) >c) >a->b ->c
curry f xy = f (x, y)

uncurry i (a->b ->c¢c) ->(a, b) ->c

uncurry f p = f (fst p) (snd p)

-- functions on lists

map 2 (a ->b) -> [a] -> [b]
map f xs=[f x| x<-xs]

++)

XS ++ YS

filter
filter p xs

concat
concat xss

concatMap
concatMap f

head, last
head (x:_)

last [x]
last (_:xs)

tail, init
tail (_:xs)

init [x]
init (x:xs)

null
null []
null (_:2)

length
length []
length (_:1)

an
x:2)
(_:xs)

foldr
foldr f
foldr f

0

(x:xs)

foldl
foldl f
foldl f

|

(x:xs)

z
z

iterate
iterate f x

repeat

:: [al -> [a] -> [a]
foldr (:) ys xs

:: (a -> Bool) -> [a] -> [d]
=[x 1| x<-xs, px]

2t [[al] -> [a]
= foldr (++) [] xss

:: (a -> [b]) -> [a] -> [b]

= concat . map f

:: [a] -> a

= X

= X

= last xs

:: [a] -> [d]
= Xs

= [

=X : init xs
:: [a] -> Bool
= True

= False

:: [al -> Int
=0

=1 + length 1
:: [a] -> Int -> a
= X

=xs !l (n-1)

::(a->b ->b) ->b ->[a] ->b
=z
= f x (foldr f z xs)

::(@->b ->a) ->a ->[b] ->a
=2z

= foldl f (f z x) xs

2 (a->a) ->a -> [al
= X : iterate f (f x)

i a > [a

repeat x = Xs where Xs = X:Xxs any p =or . map p
all p =and . map p
replicate 2 Int -> a -> [dad]
replicate n x = take n (repeat x) elem, notElem :: (Eq a) => a -> [a] -> Bool
elem x = any (== x)
cycle : [a] -> [da] notElem x = all (/= x)
cycle [] = error "Prelude.cycle: empty list"
cycle xs = xs' where xs' = xs++xs' Llookup :: (Eq a) => a -> [(a,b)] -> Maybe b
lookup key [] = Nothing
take, drop : Int -> [a] -> [a] lookup key ((x,y):xys)
take n _ | n <=0 =[] | key == x = Just y
take _ [] =[] | otherwise = lookup key xys
take n (x:xs) = x : take (n-1) xs
sum, product 2 (Num a) => [a] -> a
dropn xs | h <=0 = xs sum = foldl (+) 0
drop _ [] =[] product = foldl (*) 1
drop n (_:xs) = drop (n-1) xs
maximum, minimum :: (Ord a) => [a] -> a
splitAt : Int -> [a] -> ([al,[al) maximum [] = error "Prelude.maximum: empty list"
splitAt n xs = (take n xs, drop n xs) maximum xs = foldll max xs
takeWhile, dropWhile :: (a -> Bool) -> [a] -> [a] minimum [] = error "Prelude.minimum: empty list"
takeWhile p [] =[] minimum xs = foldll min xs
takeWhile p (x:xs)
I p x = x : takeWhile p xs zip :: [a] -> [b] -> [(a,b)]
| otherwise =[] zip = zipWith (,)
dropWhile p [] =[] zipWith 11 (a->b->¢) -> [a]->[b]->[c]
dropWhile p xs@(x:xs') zipWith z Ca:as) (b:bs)
I p x = dropWhile p xs' =zab : zipWith z as bs
| otherwise = XS zipWith _ _ _ =[]
lines, words ;1 String -> [String] unzip .2 [Ca,b)] -> ([al,[b1)
-- lines "apa\nbepa\ncepa\n" == ["apa","bepa","cepa"] unzip = foldr (\(a,b) ~(as,bs) -> (a:as,b:bs)) ([1,[1D
-- words "apa bepa\n cepa" == ["apa","bepa","cepa"]
nub :: (Eq a) => [a] -> [a]
unlines, unwords [String] -> String nub [] =[]
-- unlines ["apa" == "apa\nbepa\ncepa" nub (x:xs) =x:nb [y l|ly<-xs, x/=y]
-- unwords ["apa", == "apa bepa cepa"
delete :: Eqa=>a -> [a] -> [d]
reverse : [a] -> [a] delete y [] =[]
reverse = foldl (flip (:)) [delete y (x:xs) = if x ==y then xs else x : delete y xs
and, or :: [Bool] -> Bool AN :: Eq a => [a] -> [a]-> [da]
and = foldr (&&) True AN = foldl (flip delete)
or = foldr (Il) False
union :: Eq a => [a] -> [a] -> [d]

any, all

: (a -> Bool) -> [a] -> Bool

union xs ys

xs ++ (C ys \\ xs)

intersect
intersect xs ys

intersperse

:: Eq a = [a] -> [a]-> [da]
=[x | x<-xs, x “elem” ys]

:ta-> [a] -> [a]

-- intersperse 0 [1,2,3,4] == [1,0,2,0,3,0,4]

transpose

22 [[al] -> [[al]

-- transpose [[1,2,3],[4,5,6]]1 == [[1,4],[2,5],[3,6]]

partition
partition p xs

:: (a -> Bool) -> [a] -> ([al,[al)
= (filter p xs, filter (not . p) xs)

group :: Eq a = [a] -> [[a]]

- group "aapaabbbeee” == ["aa","p","aa","bbb","eee"]
isPrefix0f, isSuffixOf :: Eq a = [a] -> [a] -> Bool
isPrefixOf [] _ = True

isPrefix0f _ [] = False

isPrefix0f (x:xs) (y:ys)

isSuffix0f x y

sort
sort

insert
insert x []
insert x (y:xs)

-- functions on Char
type String = [Char]

toUpper, tolLower ::
-- toUpper 'a' ==

-- tolLower 'Z' ==

digitTolInt B
-- digitToInt '8' ==

intToDigit B
-- intToDigit 3 ==

ord B
chr HH

X ==y && isPrefix0f xs ys
= reverse x 'isPrefixOf" reverse y

:: (Ord @) = [a] -> [d]
= foldr insert []

:: (Ord @) => a -> [a] -> [a]
= [x]

= if x <=y then x:y:xs else y:insert x xs

Char -> Char
"
1y

Char -> Int
8

Int -> Char
130

Char -> Int
Int -> Char

	Exam121217
	prelfns

