
LUND UNIVERSITY Functional programming
Department of Computer Science 17 October 2005, 8-13

Exam
Mark each answer with your initials. Write clearly and comment what you do, that might give you points even if
the result is wrong.

1. What is the type of the expression:

map (const (++))

2. Haskell uses so called "lazy evaluation". What is that? Explain as detailed as you can what its benefits are.
Also explain why this feature is missing in most other programming languages.

3. In the list library the function unfoldr is defined as:

unfoldr :: (b -> Maybe (a,b)) -> b -> [a]
unfoldr f b = case f b of
 Nothing -> []
 Just (a,b) -> a : unfoldr f b

With a suitable function g it is possible to implement the prelude function

iterate :: (a->a) -> a -> [a]

as:

iterate = unfoldr . g

Define the function g.

4. Assume we are developing a library for image processing. We might then represent an image as a function
from the unit square [0,1]x[0,1] to some collor type. Slightly generalized this may be expressed as:

type Image a = Position -> a
type Position = (Float, Float)

 We may now for example define:

type Region = Image Boolean
type ColorImage = Image Color

 a) Write a function

paste :: Region -> Image a -> Image a -> Image a
paste reg im1 im2

 which pastes im1 into im2 wherever reg is true.

 b) Implement the following functions which convert ordinary funktions to functions on images.

lift0 :: a -> Image a
lift1 :: (a -> b) -> Image a -> Image b
lift2 :: (a -> b -> c) -> Image a -> Image b -> Image c

 so that it, for example, is possible to express the difference between to images as:

im1 ‘lift2 (-)‘ im2

 b) Describe what you need to do in order to be able to write the difference as:

im1 - im2

5. The type class Functor defines a generalisation of the list function map:

fmap :: Functor a => (b->c) -> a b -> a c

 If m is a monad, show how fmap f m can be implemented as a do-expression.

6. Consider the following function:

q [] = []
q (x:xs) = x : q (filter (/=x) xs)

a) What is the type of q and what does it do?

b) Define f and z so that q can be written:

q = foldr f z

