
EDAF40/EDAN40
Functional Programming

Compiling and testing Haskell programs

Christian.Soderberg@cs.lth.se

March 28, 2018

Christian.Soderberg@cs.lth.se 1 / 34

Today

• Tentative title: Programming environment, testing, debugging
• Editing Haskell code
• Compiling and using the REPL
• Using a build tool to work with a project
• Testing
• Debugging
• Documenting
• There will be nothing new Haskell-wise

Christian.Soderberg@cs.lth.se 2 / 34

Editing Haskell code

• Never use tabs in source code! Never ever!
• Emacs, Vim, Sublime, and Atom all have great Haskell support
• VS Code, Intellij, and Eclipse have Haskell extensions

Christian.Soderberg@cs.lth.se 3 / 34

From ”State of Haskell, 2017”

Christian.Soderberg@cs.lth.se 4 / 34

Haskell compiler and REPL

• Today almost everyone uses GHC: Glasgow Haskell Compiler,
aka. The Glorious Glasgow Haskell Compilation System

• Compiler: ghc
• Read-Evaluate-Print-Loop (REPL): ghci
• We seldom call the compiler directly, but use it from our build tool
• The REPL is useful for toying around, and trying things out
• The REPL has a couple of useful built-in commands, and can easily be configured
to handle more commands (see lecture notes afterwards)

Christian.Soderberg@cs.lth.se 5 / 34

Haskell build tools: cabal

• To build anything interesting, we need to use libraries
• Traditionally, Haskell libraries have been built and installed using cabal
• cabal is several things, amongst them:

• a format for describing packages (.cabal files)
• a tool for building and installing packages

• Many packages can be found on Hackage: https://hackage.haskell.org/
• Although a great piece of software, cabal behaves in a way which is contrary to
one of the pillars of functional programming: calling it isn’t guaranteed to produce
the same result every time, even if you don’t change your project

Christian.Soderberg@cs.lth.se 7 / 34

Haskell build tools: stack

• stack is a build tool which is built on top of cabal
• stack uses the same basic format as cabal for describing projects (.cabal files),
but guarantees repeatable builds

• Curated releases (snapshots) of Haskell libraries can be found at
https://www.stackage.org/

• Each stack release uses a specific version of ghc
• A stack-project contains a stack.yaml file in which we can specify which release
we’ll use

• stack downloads libraries and saves them in ~/.stack/ – beware that this
directory can grow into several GB if we use many different releases

• You can find more information at https://haskell-lang.org/

Christian.Soderberg@cs.lth.se 8 / 34

From ”State of Haskell, 2017”

Christian.Soderberg@cs.lth.se 9 / 34

From ”State of Haskell, 2017”

Christian.Soderberg@cs.lth.se 10 / 34

From ”State of Haskell, 2017”

Christian.Soderberg@cs.lth.se 11 / 34

Installing and maintaining stack

• Installation: see https://docs.haskellstack.org/en/stable/GUIDE/
• Upgrade: stack upgrade
• Global config in ~/.stack/config.yaml (user info) and
~/.stack/global-project/stack.yaml (default release, etc.)

• Local config in yaml-files in the project directory (see stack docs)

Christian.Soderberg@cs.lth.se 12 / 34

Using stack

• We create our project with ’stack new’
• We set up our project with ’stack setup’
• We build our project with ’stack build’
• We test our program with ’stack test’
• We run our main program with ’stack exec <projectname exe’
• We install executables with ’stack install <package-name>’
• We start a REPL with ’stack ghci’ or ’stack repl’

Christian.Soderberg@cs.lth.se 13 / 34

Testing philosophy

• We should never ship code without proper testing
• Since we’re going to write test code, we might as well do it before we write our
business code:

• It forces us to think about what functions we need, and how we want to call them
(so, it helps us design)

• Thinking about things to test is often a great way to learn about the problem
• We get the benefits of testing during the whole process, and it makes refactoring

much easier

• ”Test First”, or ”Test Driven Development”, is just one of many possible
workflows, but I think you should try it at least once

Christian.Soderberg@cs.lth.se 16 / 34

Testing in Haskell

• Two common types of testing in Haskell:
• Unit tests: we provide test data ourselves
• Property based tests: we define what properties we want our code to have, and ask

the test framework to generate test data

• HUnit is a popular tool for unit testing
• QuickCheck is a legendary tool for property testing
• Using the Tasty framework, we can easily use both unit tests and property based
tests

Christian.Soderberg@cs.lth.se 17 / 34

Unit testing with Tasty.Hunit

• Import:

import Test.Tasty
import Test.Tasty.HUnit

• Add

dependencies:
- dups
- tasty
- tasty-hunit

to the package.yaml file (it will be translated into a .cabal file)

Christian.Soderberg@cs.lth.se 19 / 34

Unit testing with Tasty.Hunit
• Tests are grouped into TestTrees, where we create single tests (leaves) using
testCase, and groups of tests (branches) using testGroup

• A single test:

testCase ”empty list” $ hasDups ”” @?= False

• A group of tests:

hasDupTests = testGroup ”Unit tests for hasDups”
[testCase ”empty list” $ hasDups ”” @?= False
, testCase ”list with one element” $ hasDups ”a” @?= False
]

• To run our tests, we call defaultMain from main, and tell it which tests we want
to run:

main :: IO ()
main = defaultMain hasDupTests

Christian.Soderberg@cs.lth.se 20 / 34

Property based testing with Tasty.QuickCheck

• Import:

import Test.Tasty
import Test.Tasty.QuickCheck

• Add

dependencies:
- dups
- tasty
- tasty-hunit
- tasty-quickcheck

to the package.yaml file

Christian.Soderberg@cs.lth.se 22 / 34

Property based testing with Tasty.QuickCheck
• We can define a function which checks some property:

noDupsAfterRemove :: Eq a => [a] -> Bool
noDupsAfterRemove list = hasDups (removeDups list) == False

• This should work for any type a for which we’ve defined equality, but to make
things easier for QuickCheck, we might as well use a specific type (you’ll soon
learn ways to write this more elegantly):

noDupsAfterRemove :: [Int] -> Bool
noDupsAfterRemove list = not $ hasDups (removeDups list)

• A property test can now be defined as:

testProperty ”no duplicates after remove” noDupsAfterRemove

• If a property test fails, QuickCheckwill try to find a minimal failing example
• Tasty lets us combine these property tests with testGroup, just is we did using
HUnit

Christian.Soderberg@cs.lth.se 23 / 34

Property based testing, caveat

• Sometimes a property holds only in some cases – for removeDups, the first value
in the input should be the first value of the output, but only if the list isn’t empty

• We can write the property as:

firstSameAfterRemove :: [Int] -> Bool
firstSameAfterRemove list =

head (removeDups list) == head list

• The test first checks that the list has at least one element:

testProperty ”first element same after removeDups” $
\list -> not (null list) ==> firstSameAfterRemove list

Christian.Soderberg@cs.lth.se 24 / 34

Property based testing, using reference implementations

• For removeDups, there is a function nubwith the exact same specification in
Data.List

• We can use nub as a reference implementation, to test our own removeDups:
sameAsNub :: [Int] -> Bool
sameAsNub list = removeDups list == nub list

• This could be useful if we’re trying to write a faster implementation of a function,
and want to make sure it still returns the right values

Christian.Soderberg@cs.lth.se 25 / 34

Property based testing, using non-standard data types

• QuickCheck can generate data for many standard types
• If we want to use QuickCheck for our own data structures, we have to make
them implement the typeclass Arbitrary, but it’s often quite easy

Christian.Soderberg@cs.lth.se 26 / 34

Documenting

• It’s very easy to generate documentation for our package, just by running

$ stack haddock
we create .html-files showing the signatures of our exported functions

• The generated documentation will reside deep inside the .stack-work/ folder in
your project

• To add text to your documentation, you just add Haddock annotations in the
source code (see next slide)

• You can read much more in the Haddock documentation at
https://www.haskell.org/haddock/

Christian.Soderberg@cs.lth.se 28 / 34

Haddock annotations

• -- starts a regular comment
• -- | starts a documentation annotation (it ends at the first non-comment line)
• -- ^ adds comments after a declaration
• You can use /../ for emphasis, and __..__ for bold text
• You can hyperlink to identifiers using ’<id>’
• You can hyperlink to modules using ”<mod>”
• -- * inserts a heading in the documentation
• -- ** inserts a sub-heading

Christian.Soderberg@cs.lth.se 29 / 34

Writing code samples in documentation

• We can write code inside our comments using >, e.g.,
−− | Checks i f a l i s t contains dupl i cates
−−
−− > hasDups ”abc”
−−
−− should return ’ False ’ .
hasDups :: (Eq a) => [a] -> Bool
...

• We can also write larger code blocks demarked by @-tags

Christian.Soderberg@cs.lth.se 31 / 34

Documenting and testing at the same time

• If we install doctest (using ’stack install’), we can write tests in our
documentation, and have the tests checked (just as doctest in Python)

• The example from the previous slide would be:

−− | Checks i f a l i s t contains dupl i cates
−−
−− >>> hasDups ”abc”
−− Fa lse
hasDups :: (Eq a) => [a] -> Bool
...

• We can check it using the command

$ stack exec doctest <source file>

Christian.Soderberg@cs.lth.se 32 / 34

Showing dependencies

• The command ’stack list-dependencies’ shows our dependencies
• We can also see the dependencies with:

$ stack dot
To also see external dependencies, we write:

$ stack dot --external
• If we have installed graphviz, we can generate a nice graph using the command:

$ stack dot | dot -Tpng -o deps.png

Christian.Soderberg@cs.lth.se 33 / 34

