Today

EDAF40/EDAN40
Functional Programming ® Tentative title: Programming environment, testing, debugging
® Editing Haskell code
Compiling and testing Haskell programs * Compiling and using the REPL
® Using a build tool to work with a project
® Testing
Christian.Soderbergacs.lth.se e Debugging

® Documenting

March 28, 2018 There will be nothing new Haskell-wise
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Editing Haskell code From ”’State of Haskell, 2017”

Which editors do you use for Haskell?

® Never use tabs in source code! Never ever!
® Emacs, Vim, Sublime, and Atom all have great Haskell support
® VS Code, Intellij, and Eclipse have Haskell extensions
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Haskell compiler and REPL

® Today almost everyone uses GHC: Glasgow Haskell Compiler,
aka. The Glorious Glasgow Haskell Compilation System

® Compiler: ghc

® Read-Evaluate-Print-Loop (REPL): ghci

® We seldom call the compiler directly, but use it from our build tool
® The REPL is useful for toying around, and trying things out

® The REPL has a couple of useful built-in commands, and can easily be configured
to handle more commands (see lecture notes afterwards)
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Haskell build tools: stack

® stack s a build tool which is built on top of cabal

® stack uses the same basic format as cabal for describing projects (. cabal files),
but guarantees repeatable builds

® Curated releases (snapshots) of Haskell libraries can be found at
https://ww.stackage.org/

® Each stackrelease uses a specific version of ghc

® Astack-project contains a stack.yaml file in which we can specify which release
we’ll use

® stack downloads libraries and saves them in ~/.stack/ — beware that this
directory can grow into several GB if we use many different releases

® You can find more information at https: //haskell-lang.org/
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Haskell build tools: cabal

® To build anything interesting, we need to use libraries
® Traditionally, Haskell libraries have been built and installed using cabal
® cabal is several things, amongst them:

® aformat for describing packages (. cabal files)
® atool for building and installing packages

® Many packages can be found on Hackage: https://hackage.haskell.org/
® Although a great piece of software, cabal behaves in a way which is contrary to

one of the pillars of functional programming: calling it isn’t guaranteed to produce
the same result every time, even if you don’t change your project
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From ”’State of Haskell, 2017”

Which build tools do you use?
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From ”’State of Haskell, 2017” From ”’State of Haskell, 2017”

What is your preferred build tool? Which version control systems do you use for Haskell?
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Stack: 849 Cabal: 165 Nix: 105 ghe-pig: 14 Other: 31 Git: 1130 Mercurial: 40 Darcs: 30 Subversion: 9 Other: 18
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Installing and maintaining stack Using stack
® We create our project with ’stack new’
e Installation: see https://docs.haskellstack.org/en/stable/GUIDE/ ® We set up our project with ’stack setup’
® Upgrade: stack upgrade ® We build our project with ’stack build’
[ )

Global configin ~/.stack/config.yaml (userinfo) and °

We test our program with ’stack test’
~/.stack/global-project/stack.yaml (default release, etc.)

® We run our main program with ’stack exec <projectname’>—exe’

Local config in yaml-files in the project directory (see stack docs)

We install executables with ’stack install <package-name>’
® We start a REPL with ’stack ghci’or’stack repl’
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Testing philosophy

® We should never ship code without proper testing

® Since we’re going to write test code, we might as well do it before we write our
business code:

® |t forces us to think about what functions we need, and how we want to call them
(so, it helps us design)

® Thinking about things to test is often a great way to learn about the problem

® We get the benefits of testing during the whole process, and it makes refactoring
much easier

® "Test First”, or ”’Test Driven Development”, is just one of many possible
workflows, but I think you should try it at least once
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Unit testing with Tasty.Hunit

® Import:

import Test.Tasty
import Test.Tasty.HUnit

® Add

dependencies:
- dups

- tasty

- tasty-hunit

to the package.yaml file (it will be translated into a . cabal file)
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Testing in Haskell

Two common types of testing in Haskell:

® Unit tests: we provide test data ourselves
® Property based tests: we define what properties we want our code to have, and ask
the test framework to generate test data

HUnit is a popular tool for unit testing
QuickCheck is a legendary tool for property testing

Using the Tasty framework, we can easily use both unit tests and property based
tests
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Unit testing with Tasty.Hunit

Tests are grouped into TestTrees, where we create single tests (leaves) using
testCase, and groups of tests (branches) using testGroup
Asingle test:

testCase "empty list” $ hasDups ”” @?= False

A group of tests:

hasDupTests = testGroup "Unit tests for hasDups”
[ testCase "empty list” $ hasDups "” @?= False
, testCase "list with one element” $ hasDups "a” @?= False

]

To run our tests, we call defaultMain from main, and tell it which tests we want
to run:

main :: I0 ()
main = defaultMain hasDupTests
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Property based testing with Tasty.QuickCheck Property based testing with Tasty.QuickCheck

® We can define a function which checks some property:

® Import: noDupsAfterRemove :: Eq a => [a] -> Bool

. noDupsAfterRemove list = hasDups (removeDups list) == False

import Test.Tasty

import Test.Tasty.QuickCheck ® This should work for any type a for which we’ve defined equality, but to make

things easier for QuickCheck, we might as well use a specific type (you’ll soon

o Add learn ways to write this more elegantly):

dependencies, noDupsAfterRemove :: [Int] -> Bool

dups : noDupsAfterRemove list = not $ hasDups (removeDups list)

- tasty ® A property test can now be defined as:
- tasty-hunit testProperty "no duplicates after remove” noDupsAfterRemove
- tasty-quickcheck

® |f a property test fails, QuickCheck will try to find a minimal failing example
to the package.yaml file property Q y g p

® Tasty lets us combine these property tests with testGroup, just is we did using

HUnit
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Property based testing, caveat Property based testing, using reference implementations
® Sometimes a property holds only in some cases — for removeDups, the first value
in the input should be the first value of the output, but only if the list isn’t empty ® For removeDups, there is a function nub with the exact same specification in
® We can write the property as: Data.list
firstSameAfterRemove :: [Int] -> Bool ® We can use nub as a reference implementation, to test our own removeDups:
firstSameAfterRemove list = sameAsNub :: [Int] -> Bool
head (removeDups list) == head list sameAsNub list = removeDups list == nub list

® The test first checks that the list has at least one element: e This could be useful if we’re trying to write a faster implementation of a function,

testProperty "first element same after removeDups” $ and want to make sure it still returns the right values
\list -> not (null list) ==> firstSameAfterRemove list
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Property based testing, using non-standard data types Documenting

® [t’s very easy to generate documentation for our package, just by running
$ stack haddock

e QuickCheck can generate data for many standard types we create . html-files showing the signatures of our exported functions

® The generated documentation will reside deep inside the .stack-work/ folderin
your project

® |f we want to use QuickCheck for our own data structures, we have to make
them implement the typeclass Arbitrary, butit’s often quite easy
® To add text to your documentation, you just add Haddock annotations in the
source code (see next slide)

® You can read much more in the Haddock documentation at
https://ww .haskell.org/haddock/
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Haddock annotations Writing code samples in documentation
® -- starts aregular comment ® We can write code inside our comments using >, e.g.,
e —- | starts a documentation annotation (it ends at the first non-comment line) — | Checks if a list contains duplicates
e -- "adds comments after a declaration —
. — > hasDups "abc”
® Youcanuse/ ../ foremphasis,and __ .. __ forbold text o
® You can hyperlink to identifiers using ’<id>’ should return ’False’.

. o N hasDups :: (Eq a) => [a] -> Bool
® You can hyperlink to modules using " <mod>

® -- *inserts a heading in the documentation

. . ® We can also write larger code blocks demarked by a-tags
® -- %% inserts a sub-heading
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Documenting and testing at the same time Showing dependencies

e If weinstall doctest (using’stack install’), we can write tests in our

documentation, and have the tests checked (just as doctest in Python) ® The command’stack list-dependencies’shows our dependencies
® The example from the previous slide would be: e We can also see the dependencies with:
— | Checks if a list contains duplicates $ stack dot

— >>> hasDups ”abc” To also see external dependencies, we write:

— False $ stack dot --external
hasDups :: (Eq a) => [a] -> Bool .
.. ® |f we have installed graphviz, we can generate a nice graph using the command:
stack dot | dot -Tpng -o deps.pn
® We can check it using the command $ | png ps.png
$ stack exec doctest <source file>
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