Today

EDAF40/EDAN40
Functional Programming ® Tentative title: Programming environment, testing, debugging
® Editing Haskell code
Compiling and testing Haskell programs * Compiling and using the REPL
® Using a build tool to work with a project
® Testing
Christian.Soderbergacs.lth.se e Debugging

® Documenting

March 28, 2018 There will be nothing new Haskell-wise

Christian.Soderbergacs.lth.se 1/34 Christian.Soderbergacs.lth.se 2/34

Editing Haskell code From ”’State of Haskell, 2017”

Which editors do you use for Haskell?

® Never use tabs in source code! Never ever!
® Emacs, Vim, Sublime, and Atom all have great Haskell support
® VS Code, Intellij, and Eclipse have Haskell extensions

Christian.Soderbergacs.lth.se 3/34 Christian.Soderbergacs.lth.se 434

Haskell compiler and REPL

® Today almost everyone uses GHC: Glasgow Haskell Compiler,
aka. The Glorious Glasgow Haskell Compilation System

® Compiler: ghc

® Read-Evaluate-Print-Loop (REPL): ghci

® We seldom call the compiler directly, but use it from our build tool
® The REPL is useful for toying around, and trying things out

® The REPL has a couple of useful built-in commands, and can easily be configured
to handle more commands (see lecture notes afterwards)

Christian.Soderbergacs.lth.se 5/34

Haskell build tools: stack

® stack s a build tool which is built on top of cabal

® stack uses the same basic format as cabal for describing projects (. cabal files),
but guarantees repeatable builds

® Curated releases (snapshots) of Haskell libraries can be found at
https://ww.stackage.org/

® Each stackrelease uses a specific version of ghc

® Astack-project contains a stack.yaml file in which we can specify which release
we’ll use

® stack downloads libraries and saves them in ~/.stack/ — beware that this
directory can grow into several GB if we use many different releases

® You can find more information at https: //haskell-lang.org/

Christian.Soderbergacs.lth.se 8/34

Haskell build tools: cabal

® To build anything interesting, we need to use libraries
® Traditionally, Haskell libraries have been built and installed using cabal
® cabal is several things, amongst them:

® aformat for describing packages (. cabal files)
® atool for building and installing packages

® Many packages can be found on Hackage: https://hackage.haskell.org/
® Although a great piece of software, cabal behaves in a way which is contrary to

one of the pillars of functional programming: calling it isn’t guaranteed to produce
the same result every time, even if you don’t change your project

Christian.Soderbergacs.lth.se 7134

From ”’State of Haskell, 2017”

Which build tools do you use?

eeeeeee

Christian.Soderbergacs.lth.se 9/34

From ”’State of Haskell, 2017” From ”’State of Haskell, 2017”

What is your preferred build tool? Which version control systems do you use for Haskell?
1250

2000
2000
750
500

20

20

Stack: 849 Cabal: 165 Nix: 105 ghe-pig: 14 Other: 31 Git: 1130 Mercurial: 40 Darcs: 30 Subversion: 9 Other: 18

Christian.Soderbergacs.lth.se 10/34 Christian.Soderbergacs.lth.se 1/34
Installing and maintaining stack Using stack
® We create our project with ’stack new’
e Installation: see https://docs.haskellstack.org/en/stable/GUIDE/ ® We set up our project with ’stack setup’
® Upgrade: stack upgrade ® We build our project with ’stack build’
[)

Global configin ~/.stack/config.yaml (userinfo) and °

We test our program with ’stack test’
~/.stack/global-project/stack.yaml (default release, etc.)

® We run our main program with ’stack exec <projectname’>—exe’

Local config in yaml-files in the project directory (see stack docs)

We install executables with ’stack install <package-name>’
® We start a REPL with ’stack ghci’or’stack repl’

Christian.Soderbergacs.lth.se 12/34 Christian.Soderbergacs.lth.se 13/34

Testing philosophy

® We should never ship code without proper testing

® Since we’re going to write test code, we might as well do it before we write our
business code:

® |t forces us to think about what functions we need, and how we want to call them
(so, it helps us design)

® Thinking about things to test is often a great way to learn about the problem

® We get the benefits of testing during the whole process, and it makes refactoring
much easier

® "Test First”, or ”’Test Driven Development”, is just one of many possible
workflows, but I think you should try it at least once

Christian.Soderbergacs.lth.se 16/34

Unit testing with Tasty.Hunit

® Import:

import Test.Tasty
import Test.Tasty.HUnit

® Add

dependencies:
- dups

- tasty

- tasty-hunit

to the package.yaml file (it will be translated into a . cabal file)

Christian.Soderbergacs.lth.se 19/34

Testing in Haskell

Two common types of testing in Haskell:

® Unit tests: we provide test data ourselves
® Property based tests: we define what properties we want our code to have, and ask
the test framework to generate test data

HUnit is a popular tool for unit testing
QuickCheck is a legendary tool for property testing

Using the Tasty framework, we can easily use both unit tests and property based
tests

Christian.Soderbergacs.lth.se 17134

Unit testing with Tasty.Hunit

Tests are grouped into TestTrees, where we create single tests (leaves) using
testCase, and groups of tests (branches) using testGroup
Asingle test:

testCase "empty list” $ hasDups ”” @?= False

A group of tests:

hasDupTests = testGroup "Unit tests for hasDups”
[testCase "empty list” $ hasDups "” @?= False
, testCase "list with one element” $ hasDups "a” @?= False

]

To run our tests, we call defaultMain from main, and tell it which tests we want
to run:

main :: I0 ()
main = defaultMain hasDupTests

Christian.Soderbergacs.lth.se 20/34

Property based testing with Tasty.QuickCheck Property based testing with Tasty.QuickCheck

® We can define a function which checks some property:

® Import: noDupsAfterRemove :: Eq a => [a] -> Bool

. noDupsAfterRemove list = hasDups (removeDups list) == False

import Test.Tasty

import Test.Tasty.QuickCheck ® This should work for any type a for which we’ve defined equality, but to make

things easier for QuickCheck, we might as well use a specific type (you’ll soon

o Add learn ways to write this more elegantly):

dependencies, noDupsAfterRemove :: [Int] -> Bool

dups : noDupsAfterRemove list = not $ hasDups (removeDups list)

- tasty ® A property test can now be defined as:
- tasty-hunit testProperty "no duplicates after remove” noDupsAfterRemove
- tasty-quickcheck

® |f a property test fails, QuickCheck will try to find a minimal failing example
to the package.yaml file property Q y g p

® Tasty lets us combine these property tests with testGroup, just is we did using

HUnit
Christian.Soderbergacs.lth.se 22/34 Christian.Soderbergacs.lth.se 23/34
Property based testing, caveat Property based testing, using reference implementations
® Sometimes a property holds only in some cases — for removeDups, the first value
in the input should be the first value of the output, but only if the list isn’t empty ® For removeDups, there is a function nub with the exact same specification in
® We can write the property as: Data.list
firstSameAfterRemove :: [Int] -> Bool ® We can use nub as a reference implementation, to test our own removeDups:
firstSameAfterRemove list = sameAsNub :: [Int] -> Bool
head (removeDups list) == head list sameAsNub list = removeDups list == nub list

® The test first checks that the list has at least one element: e This could be useful if we’re trying to write a faster implementation of a function,

testProperty "first element same after removeDups” $ and want to make sure it still returns the right values
\list -> not (null list) ==> firstSameAfterRemove list

Christian.Soderbergacs.lth.se 24/[34 Christian.Soderbergacs.lth.se 25/34

Property based testing, using non-standard data types Documenting

® [t’s very easy to generate documentation for our package, just by running
$ stack haddock

e QuickCheck can generate data for many standard types we create . html-files showing the signatures of our exported functions

® The generated documentation will reside deep inside the .stack-work/ folderin
your project

® |f we want to use QuickCheck for our own data structures, we have to make
them implement the typeclass Arbitrary, butit’s often quite easy
® To add text to your documentation, you just add Haddock annotations in the
source code (see next slide)

® You can read much more in the Haddock documentation at
https://ww .haskell.org/haddock/

Christian.Soderbergacs.lth.se 26/34 Christian.Soderbergacs.lth.se 28/34

Haddock annotations Writing code samples in documentation
® -- starts aregular comment ® We can write code inside our comments using >, e.g.,
e —- | starts a documentation annotation (it ends at the first non-comment line) — | Checks if a list contains duplicates
e -- "adds comments after a declaration —
. — > hasDups "abc”
® Youcanuse/ ../ foremphasis,and __ .. __ forbold text o
® You can hyperlink to identifiers using ’<id>’ should return ’False’.

. o N hasDups :: (Eq a) => [a] -> Bool
® You can hyperlink to modules using " <mod>

® -- *inserts a heading in the documentation

. . ® We can also write larger code blocks demarked by a-tags
® -- %% inserts a sub-heading

Christian.Soderbergacs.lth.se 29/34 Christian.Soderbergacs.lth.se 31/34

Documenting and testing at the same time Showing dependencies

e If weinstall doctest (using’stack install’), we can write tests in our

documentation, and have the tests checked (just as doctest in Python) ® The command’stack list-dependencies’shows our dependencies
® The example from the previous slide would be: e We can also see the dependencies with:
— | Checks if a list contains duplicates $ stack dot

— >>> hasDups ”abc” To also see external dependencies, we write:

— False $ stack dot --external
hasDups :: (Eq a) => [a] -> Bool .
.. ® |f we have installed graphviz, we can generate a nice graph using the command:
stack dot | dot -Tpng -o deps.pn
® We can check it using the command $ | png ps.png
$ stack exec doctest <source file>

Christian.Soderbergacs.lth.se 32/34 Christian.Soderbergacs.lth.se 33/34

